Drug dosing in Chronic Kidney Disease: Is the Cockcroft-Gault Formula always the Best Estimator of Renal Function to Prevent Overexposure?

Christophe Mariat, Hans Pottel, Pierre Delanaye

Division of Nephrology, Dialysis, Transplantation and Hypertension, CHU Hôpital Nord, University Jean Monnet, PRES Université de LYON, Saint-Etienne, France Department of Public Health and Primary Care, KU, Leuven Kulak, Kortrijk, Belgium Division of Nephrology, Dialysis, Transplantation, University of Liège (ULg-CHU), Liège, Belgium

Which creatinine-based GFR equation should

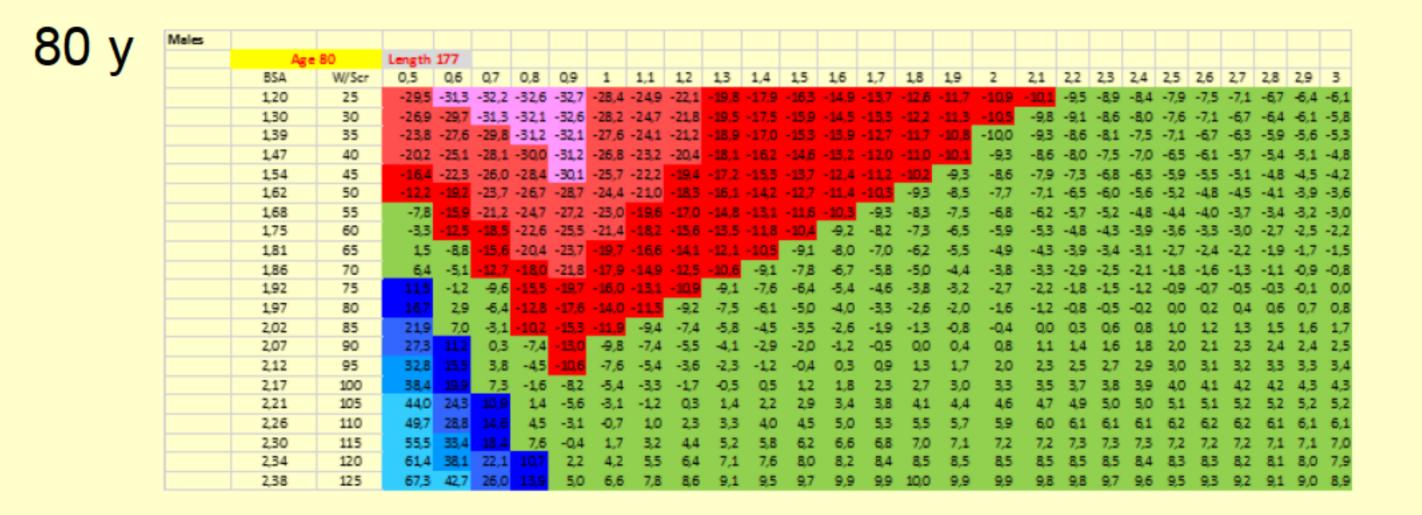
preferentially be used in the context of drug dosing is highly debated. While most Nephrology guidelines recommend the use of the CKD-EPI equation, other specialists such as geriatricians keep on favoring the use of the Cockcroft-Gault equation (C-G). Along with the fact that dosing recommendations were most often initially done based on C-G, the main justification is that this equation usually provides lower value of GFR as compared to the CKD-EPI equation, and thus minimizes the risk of overdosing. Herein, we wanted to verify whether this assertion was systematically true regardless of demographic characteristics.

Methods:

kulak

KU LEUVEN

Universi


We developed a software program that explores, for different age strata and gender, more than 500 combinations of weight and serum creatinine values. For each combination, GFR was estimated by both CKD-EPI and C-G and the difference (CKD-EPI – C-G) was calculated. We considered a difference in eGFR between -10 ml/min and + 10 ml/min as a good agreement between CKD-EPI and C-G. Alternatively, a difference < -10 ml/min and > +10 ml/min was considered as, respectively, a significant higher and lower GFR estimation given by G-C as compared to CKD-EPI.

	Males																												
		Age	60	Length	177																				_				
		BSA	W/Scr		0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3
		1,20	25		-29,7	-31,6	-32,8	-33,5	-28,9	-25,2	-22,3	-19,9	-17,9	-16,2	-14,7	-13,5	-12,4	-11,4	-10,6	-9,9	_	-8,6	-8,1	-7,6	-7,2	-6,8	-6,4	-6.1	-5,7
60 y		1,30	30	-21,8	-26,6	-29,5	-31,3	-32,5	-27,9	-24,2	-21,3	-18,9	-15,9	-15.3	-13,8	-12,6	-11.5	-10,6	-9,8	-9,1	-8,4	-7,9	-7,3	-6.9	-6.5	-6.1	-5,7	-5,4	-5,1
,		1,39	35		-22,9						-20,0	-17,7	-15,7	-14,1	-12,7	-11,5	-10,5	-9,6	-8,8	-8,1	-7,5	-7,0	-6,5	-6,0	-5,6	-5,3	-4,9	-4,6	-4,3
		1,47	40	-11,1	-18,7	-23,6	-26,9	-29,2	-24,7	-21,2	-18,4	-16,2	-14,3	-12,7	-11,4	-10,5	-9,3	-8,4	-7,7	-7,0	-6,5	-5,9	-5,5	-5,1	-4,7	-4,4	-4,0	-3,8	-3,5
		1,54	45	-5,1	-14,2	-20,1	-24,2	-27,0	-22,7	-19,3	-16,7	-14,5	-12,7	-11,2	-9,9	-8,9	-7,9	-7,1	-6,5	-5,8	-5,3	-4,8	-4,4	-4,0	-3,7	-3,4	-3,1	-2,8	-2,6
		1,62	50	1,1	-9,4	-16,4	-21,2	-24,6	-20,5	-17,3	-14,7	-12,6	-10,9	-9,5	-8,4	-7,4	-6,5	-5,8	-5,1	-4,6	-4,1	-3,6	-3,2	-2,9	-2,6	-2,3	-2,1	-1,8	-1,6
		1,68	55	7,7	-4,4	-12,4	-18,0	-22,0	-18,1	-15,0	-12,6	-10,6	-9,1	-7,8	-6,7	-5,7	-5,0	-43	-3,7	-3,2	-2,7	-2,4	-2,0	-1,7	-1,4	-1,2	-1,0	-0,8	-0,6
		1,75	60	14,5		-8,2	-14,6	-19,2	-15,5	-12,6	-10,4	-8,5	-7,1	-5,9	-4,9	-4,0	-3,3	-2,7	-2,2	-1,8	-1,4	-1,0	-0,7	-0,5	-0,2	0,0	0,1	0,3	0,5
		1,81	65	21,5	6,3	-3,9	-11,1	-16,3	-12,8	-10,1	-8,0	-6,3	-5,0	-3,9	-3,0	-2,3	-1,6	-1,1	-0,7	-0,3	0,1	0,3	0,6	0,8	1,0	1,2	1,3	1,4	1,6
		1,85	70	28,7	11,9	0,5	-7,4	-13,2	-9,9	-7,5	-5,6	-41	-2,8	-1,9	-1,1	-0,4	0,1	0,6	0,9	1,3	1,5	1,8	2,0	2,1	2,3	2,4	2,5	2,6	2,7
		1,92	75	36,0	17,7	5,3	-3,5	-10,0	-7,0	-4,7	-3,0	-1,7	-0,6	0,2	0,9	1,5	1,9	2,3	2,6	2,8	3,1	3,2	3,4	3,5	3,6	3,7	3,7	3,8	3,8
		1,97	80	43,5	23,6	10,0	0,4	-6,7	-4,0	-1,9	-0,4	0,8	1,7	2,4	3,0	3,4	3,8	4,1	4,3	4,5	4,6	4,7	4,8	4,9	4,9	5,0	5,0	5,0	5,0
		2,02	85	51,1	29,6	14,9	4,5	-3,3	-0,8	1,0	2,3	3,3	4,0	4,6	5,1	5,4	5,7	5,9	6,0	6,1	6,2	6,3	6,3	6,3	6,3	6,3	6,3	6,3	6,2
		2,07	90	58,8		19,9	8,6	0,2	2,4	3,9	5,0	5,8	6,4	6,9	7,2	7,4	7,6	7,7	7,8	7,8	7,8	7,8	7,8	7,8	7,7	7,7	7,6	7,5	7,5
		2,12	95	66,7	41,9	25,0		3,8	5,7	6,9	7,8	8,5	8,9	9,2	9,4	9,5	9,6	9,6	9,6	9,5	9,5	9,4	9,3	9,2	9,1	9,0	8,9	8,8	8,7
		2,17	100	74,6		30,2	17,2	7,5	9,0																			10,1	10,0
		2,21	105		54,6	35,4	21,6																						
		2,26	110	90,7	61,1	40,7	26,0																						
		2,30	115	98,9		45,1	30,6	18,9	19,4	19,6	19,6	19,4	19,1	18,8	18,5	18,1													
		2,34	120	107,1		51,5	35,2	22,9	23,0	22,9	22,6	22,2	21,8	21,3	20,8	20,4	19,9	19,4	19,0	18,5									
		2,38	125	115,5	80,9	57,1	39,8	26,8	26,7	26,2	25,7	25,1	24,5	23,8	23,2	22,6	22,0	21,4	20,9	20,4	19,9	19,4	18,9	18,5	18,1	17,7	17,3	16,9	16,6

2,02 85 64,7 39,9 23,1 11,0 2,0 4,0 5,5 6,6 7,3 7,8 8,2 8,5 8,7 8,8 8,9 <	85 84 83
2,12 95 82,5 54,1 34,7 20,7 10,2 11,6 12,5 13,0 13,5 1	
2,17 100 91,6 61,4 40,6 25,7 14,5 15,5 16,0 16,3 16,4 16,4 16,3 16,1 15,9 15,6 15,4 15,1 14,9 14,6 14,3 14,1 13,8 13,6 13,3	8,9 9,9 <u>9</u> ,8
	16 114 112
2,21 105 100,8 68,7 45,7 30,8 18,8 19,4 19,7 19,7 19,5 19,3 19,0 18,7 18,3 18,0 17,6 17,3 16,9 16,6 16,2 15,9 15,6 15,3 15,0	3,1 12,9 12,7
	47 144 141
2,26 110 110,1 76,1 52,8 35,9 23,2 23,5 23,4 23,1 22,7 22,3 21,8 21,3 20,8 20,4 19,9 19,4 19,0 18,5 18,1 17,7 17,3 17,0 16,6	5,3 15,9 15,6
2,30 115 119,4 83,6 59,0 41,1 27,7 27,5 27,1 26,6 26,0 25,3 24,7 24,0 23,4 22,8 22,2 21,6 21,1 20,5 20,0 19,6 19,1 18,7 18,3	7,9 17,5 17,1
2,34 120 128,9 91,2 65,2 45,4 32,3 31,7 30,9 30,1 29,2 28,4 27,5 26,7 25,9 25,2 24,5 23,8 23,2 22,6 22,0 21,4 20,9 20,4 19,9	8,5 19,1 18,6
2,38 125 138,4 98,9 71,6 51,8 36,8 35,8 34,7 33,6 32,5 31,4 30,4 29,4 28,5 27,6 26,8 26,0 25,3 24,6 23,9 23,3 22,7 22,2 21,6	1,1 20,6 20,2

70	Males																												
70 y		Age	70	Length	177																								
r Oy		BSA	W/Scr	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	з
-		1,20	25	-27,7	-30,3	-31,8	-32,6	-33,0	-28,5	-25,0	-22,1	-19,7	-17,8	-16,1	-14,7	-13,5	-12,4	-11,5	-10,7	-10,0	-9,3	-8,7	-8,2	-7,7	-7,3	-6,9	-6,5	-6,2	-5,9
		1,30	30	-24,2	-27,9	-30,2	-31,6	-32,4	-27,9	-24,3	-21,5	-19,1	-17,1	-15,5	-14,1	-12,9	-11,8	-10,9	-10,1	-9,4	-8,7	-8,2	-7,6	-7,2	-6,8	-6,4	-6,0	-5,7	-5,4
		1,39	35	-20,0	-25,0	-28,1	-30,1	-31,4	-26,9	-23,3	-20,5	-18,2	-16,2	-14,6	-13,2	-12,1	-11,0	-10,1	-9,3	-8,6	-8,0	-7,5	-7,0	-6,5	-6,1	-5,7	-5,4	-5,1	-4,8
		1,47	40	-15,5	-21,7	-25,6	-28,2	-30,0	-25,6	-22,1	-19,3	-17,0	-15,1	-13,6	-12,2	-11,1	-10,1	-9,2	-8,4	-7,8	-7,2	-6,6	-6,2	-5,7	-5,3	-5,0	-4,7	-4,4	-4,1
		1,54	45	-10,5	-18,0	-22,9	-26,1	-28,4	-24,0	-20,6	-17,9	-15,7	-13,9	-12,3	-11,1	-9,9	-9,0	-8,2	-7,A	-6,8	-6,2	-5,7	-5,3	-4,9	-4,5	-4,2	-3,9	-3,6	-3,4
		1,62	50	-5,3	-14,1	-19,8	-23,7	-26,5	-22,3	-19,0	-16,3	-14,2	-12,5	-11.0	-9,8	-8,7	-7,8	-7,0	-6,4	-5,8	-5,2	-4,8	-4,3	-4,0	-3,6	-3,3	-3,1	-2,8	-2,6
		1,68	55	0,2	-9,9	-16,6	-21,2	-24,4	-20,3	-17,2	-14,6	-12,6	-10,9	-9,6	-8,4	-7,4	-6,6	-5,8	-5,2	-4,6	-4,1	-3,7	-3,3	-3,0	-2,7	-2,4	-2,2	-1,9	-1,7
		1,75	60	5,9	-5,5	-13,1	-18,4	-22,2	-18,3	-15,2	-12,8	-10,9	-9,3	-8,0	-6,9	-6,0	-5,2	-4,5	-4,0	-3,5	-3,0	-2,6	-2,3	-2,0	-1,7	-1,4	-1,2	-1,0	-0,8
		1,81	65	11,8	-1,0	-9,5			-16,0		_	-9,1	-7,6	-6,4	-5,4	-4,5	-3,8	-3,2	-2,7	-2,2	-1,8	-1,5	-1,2	-0,9	-0,7	-0,4	-0,3	-0,1	0,1
		1,86	70	17,8	3,7	-5,8	-12,4	-17,3	-13,7	-11,0	-8,9	-7,2	-5,8	-47	-3,8	-3,0	-2 <i>/</i> 4	-1,8	-1,3	-0,9	-0,6	-0,3	0,0	0,2	0,4	0,6	0,8	0,9	1,0
		1,92	75	24,1	8,5	-1,9	-9,2	-14,6	-11,3	-8,8	-6,8	-5,2	-4,0	-3,D	-2,1	-1,4	-0,9	-0,4	0,0	0,4	0,7	0,9	1,2	1,4	1,5	1,7	1,8	1,9	2,0
		1,97	80	30,4		2,1	-6,0	-11,9	-8,8	-6,4	-4,6	-3,2	-2,1	-1,2	-0,4	0,2	0,7	1,1	1,5	1,7	2,0	2,2	2,4	2,5	2,7	2,8	2,9	2,9	3,0
		2,02	85	36,8	18,6	6,2	-2,6	-9,1	-6,2	-4,0	-2,4	-1,1	-0,1	0,7	1,3	1,9	2,3	2,6	2,9	3,1	3,3	3,5	3,6	3,7	3,8	3,9	3,9	4,0	4,0
		2,07	90	43,4	23,7	10,4	0,9	-6,1	-3,5	-1,5	-0,1	1,0	1,9	2,6	3,1	3,6	3,9	4,2	4,4	4,6	4,7	4,8	4,9	4,9	5,0	5,0	5,0	5,1	5,1
		2,12	95	50,1	29,0		4,5	-3,1	-0,7	1,0	2,3	3,2	4,0	4,5	5,0	5,3	5,6	5,8	5,9	6,0	6,1	6,1	6,2	6,2	6,2	6,2	6,2	6,1	6,1
		2,17	100	56,8	34,4	19,0	8,1	-0,1	2,1	3,6	4,7	5,5	6,1	6,5	6,9	7,1	7,3	7,4	7,4	7,5	7,5	7,5	7,5	7,5	7,4	7,4	7,3	7,3	7,2
		2,21	105	63,7	39,8	23,5	11,8	3,1	4,9	6,2	7,1	7,8	8,2	8,5	8,8	8,9	9,0	9,0	9,0	9,0	9,0	8,9	8,8	8,7	8,7	8,6	8,5	8,4	8,3
		2,26	110	70,6	45,3	28,0	15,5	6,3	7,9	8,9	9,6													10,0	9,9	9,8	9,7	9,5	9,4
		2,30	115	77,6	50,8	32,5	19,4	9,5																					
		2,34	120	84,6	56,5	37,2	23,2																						
		2,38	125	91,7	62,2	41,8	27,2	16,2	16,9	17,2	17,3	17,3	17,1	16,9			16,1		15,5	15,2	14,9	14,6	14,3	14,1	13,8		13,3		12,8

Concordant (green cases) and discordant results (red and blue) when age increases from 50 to 80 y. Results are expressed as absolute difference in mL/min. Red color will correspond to cases where CG equation give significantly lower values than CKD-EPI, blue color will correspond to cases where CKD-EPI gives higher results

Overall, levels of agreement were significantly improved for the highest strata of ages with 36% and

62% of concordant GFR values for 40 and 80 years of age, respectively (p<0.01). For strata of ages above 70 years, C-G systematically gave lower GFR value for a weight below 60 kg and for a serum creatinine in the range of normal or near normal values. For weights above 90 kg, C-G-based values were never lower than CKD-EPI irrespective of the serum creatinine value. For strata of ages below 55 years, C-G provided significantly lower value of GFR in only less than 10% of the simulations.

Conclusions:

Our data challenge the notion that C-G systematically gives lower value of GFR as compared to CKD-EPI. Age, weight and serum creatinine value are critical factors influencing the agreement between C-G and CKD-EPI. The typical situation in which C-G results in lower GFR estimates is a patient of 70 years old or more who tends to be underweight and with a low/normal serum creatinine value. Our data do not support the notion that disagreement between C-G and CKD-EPI should favor the use of C-G for preventing drug overdosing.

Chronic Kidney Disease. Lab methods, GFR measurement, urine proteomics.

DOI: 10.3252/pso.eu.53era.2016

•COM