

Comparison of five eGFR equations in younger vs older patients

Coca A¹, Valencia AL¹, Aller C¹, Pérez V¹, Bustamante J², Mendiluce A¹.

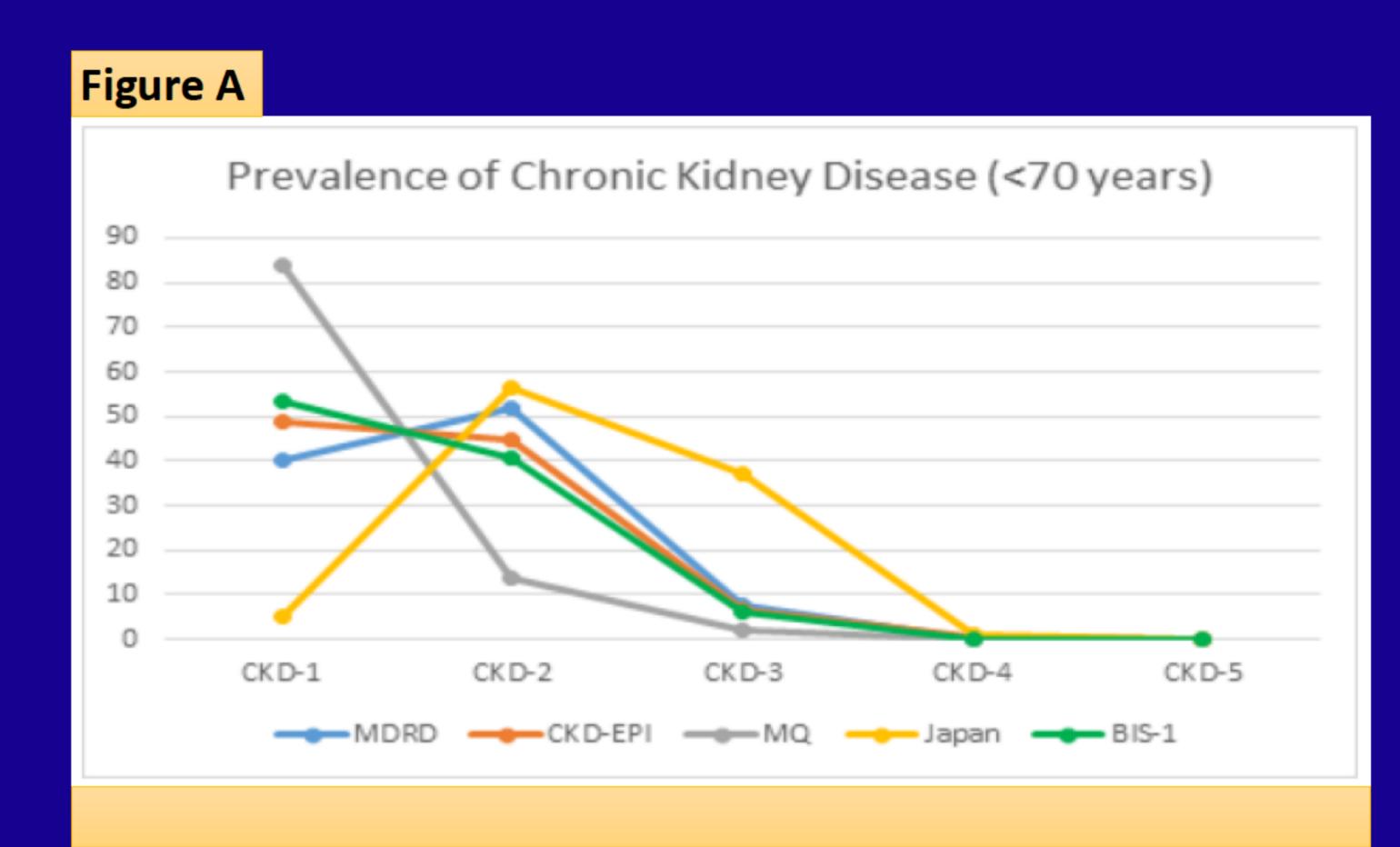
¹Dept of Nephrology, Hospital Clínico Valladolid. ²Dept of Medicine, Dermatology and Toxicology, School of Medicine, Valladolid.

Introduction

New equations have been published in the last years that try to improve the accuracy of the estimation of the glomerular filtration rate (eGFR) in a wide range of patients. Each equation was created from a sample of specific individuals: patients with CKD (MDRD and CKD-EPI), healthy kidney donors (MQ), asian patients (Japanese GFR) and the elderly (BIS-1). We used five GFR equations to calculate the prevalence of CKD in a sample of healthy adult spanish individuals.

Materials and Methods

491 healthy patients were enrolled in the present study. eGFR was estimated using five methods: MDRDa, CKD-EPI, Mayo Quadratic (MQ), Japanese GFR equation (Japan) and Berlin Initiative Study 1 (BIS-1). Clinical and anthropometric data were collected from the hospital records. The statistical analysis was performed using IBM SPSS Statistics 22.


Results

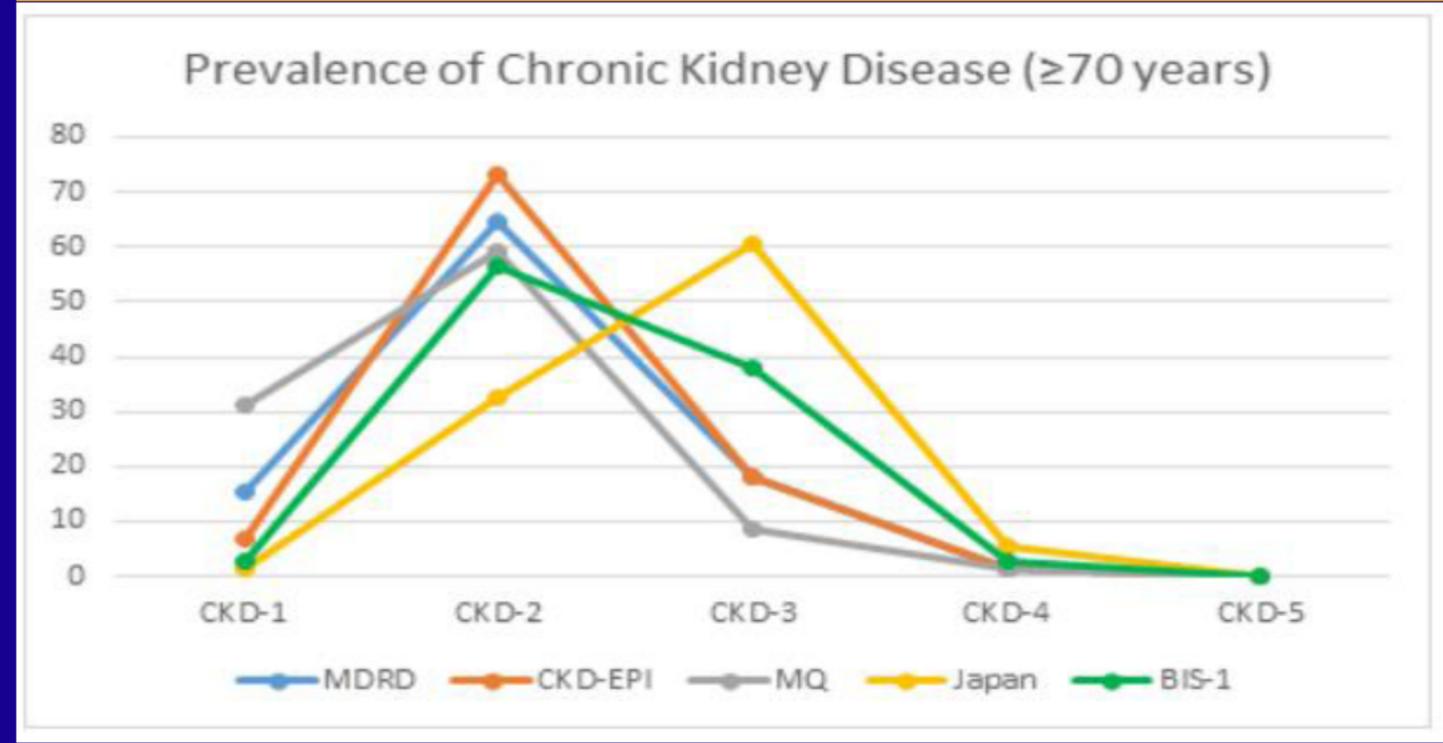

Table 2

Figure A summarizes the % of individuals within each stage of CKD according to the different equations. The performance of the equations varies with the age of patients. MQ offers the lowest % of patients aged < 70 years classified in CKD stages 3-5 (2.4%) followed by BIS-1 (6%), CKD-EPI (6.5%), MDRD (8%) and Japanese-GFR (38.4%). In the elderly MQ classifies 9.8% of patients in CKD stages 3-5, followed by MDRD (19.7%), CKD-EPI (19.8%), BIS-1 (40.9%) and Japanese-GFR (66.2%). The BIS-1 equation presents the most significant increase in the percentage of patients classified as CKD stages 3-5 when comparing the elderly with younger patients (+34,9%).

Table 1			
	All Patients	Age < 70 y	Age ≥ 70y
N	491	420	71
Age (years)	54,2 ± 14,03	50,6 ± 11,83	75,14 ± 4,56
Male Gender (%)	58,2% (286)	58,8%(247)	54,9%(39)
Weight (kg)	73,08 ± 14,01	73,3 ± 14,2	71,2 ± 13,8
Hypertension (%)	33,4%(164)	29,3%(123)	50,7%(36)
Diabetes (%)	11%(54)	8,8%(37)	36,6%(26)
Serum Urea (mg/dl)	37,3 ± 11,9	36,3 ± 10,4	45,8 ± 18,7
Serum Creatinine (mg/dl)	0,93 ± 0,25	$0,92 \pm 0,23$	0.97 ± 0.3

Table 2								
	Estimated Glomerular Filtration Rate							
	Avg ± St.Dev	>90 (%)	90-60 (%)	60-30 (%)	30-15 (%)	<15 (%)		
MDRD								
AII	85,5 ± 20,11	36,5%(179)	54%(265)	9,2%(45)	0,4%(2)	0%		
Age < 70 y	87 ± 19,65	40%(168)	52%(219)	7,6%(32)	0,2%(1)	0%		
Age ≥ 70 y	76,7 ± 20,5	15,5%(11)	64,8%(46)	18,3%(13)	1,4%(1)	0%		
CKD-EPI								
All	85,56 ± 18,32	42,4%(208)	49%(240)	8,1%(40)	0,6%(3)	0%		
Age < 70 y	88 ± 17,41	49%(204)	44,5%(187)	6,4%(27)	0,5%(2)	0%		
Age ≥ 70y	70,8 ±16,7	7%(5)	73,2%(52)	18,3%(13)	1,4%(1)	0%		
Mayo Quad								
AII	100,23 ± 18,6	76,2%(374)	20,5%(100)	3,1%(15)	0,4%(2)	0%		
Age < 70 y	103 ± 17,2	84%(353)	13,6%(57)	2,1%(9)	0,2%(1)	0%		
Age ≥ 70y	83,7 ± 17,6	31%(22)	59,2%(42)	8,5%(6)	1,4%(1)	0%		
J-GFR								
All	63,37 ± 14,66	4,7%(23)	53%(260)	40,5%(199)	1,8%(9)	0%		
Age < 70 y	64,8 ± 14,3	5,2%(22)	56,4%(237)	37,1%(156)	1,2%(5)	0%		
Age ≥ 70y	54,9 ± 14	1,4%(1)	32,4%(23)	60,6%(43)	5,6%(4)	0%		
BIS-1								
All	92,9 ± 32,3	46%(226)	43%(210)	10,8%(53)	0,4%(2)	0%		
Age < 70 y	98,3 ± 31,6	53,4%(224)	40,6%(170)	6,2%(26)	0%	0%		
Age ≥ 70y	61,7 ± 13,7	2,8%(2)	56,3%(40)	38%(27)	2,8%(2)	0%		

Conclusions

The prevalence of CKD varies according to the equation used to estimate GFR. In younger patients BIS-1, although not being validated for this population, provides similar results to CKD-EPI across all stages. In the elderly its performance changes, increasing the percentage of patients classified as CKD-3 as opposed to CKD-EPI. GFR equations are a useful tool in clinical practice, although they should be carefully considered, especially in patients with extreme weight or age. The BIS-1 equation may constitute a promising tool to assess GFR in the elderly, especially with a progressively aging population.

