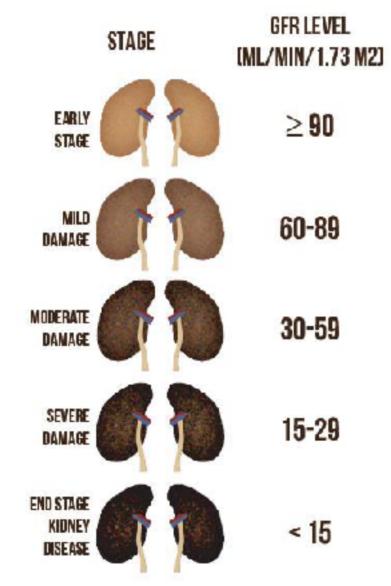
# MULTI-OMICS DATA INTEGRATION IN THE CONTEXT OF PRIMARY GLOMERULONEPHRITIS

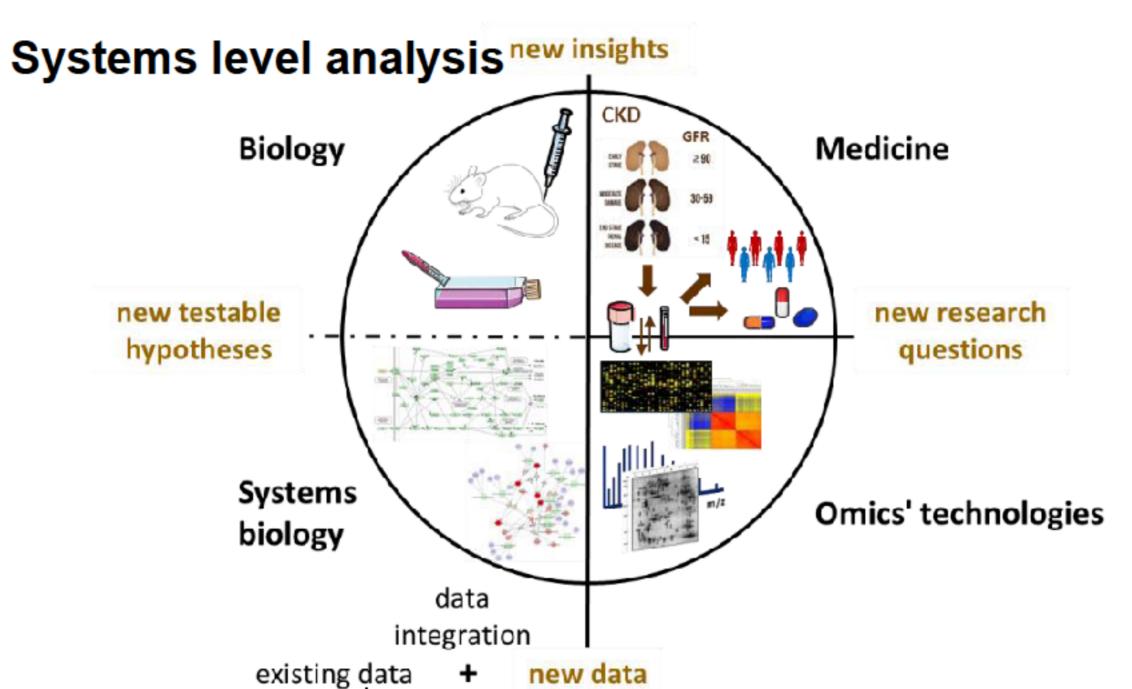
\*Marco Fernandes and Holger Husi

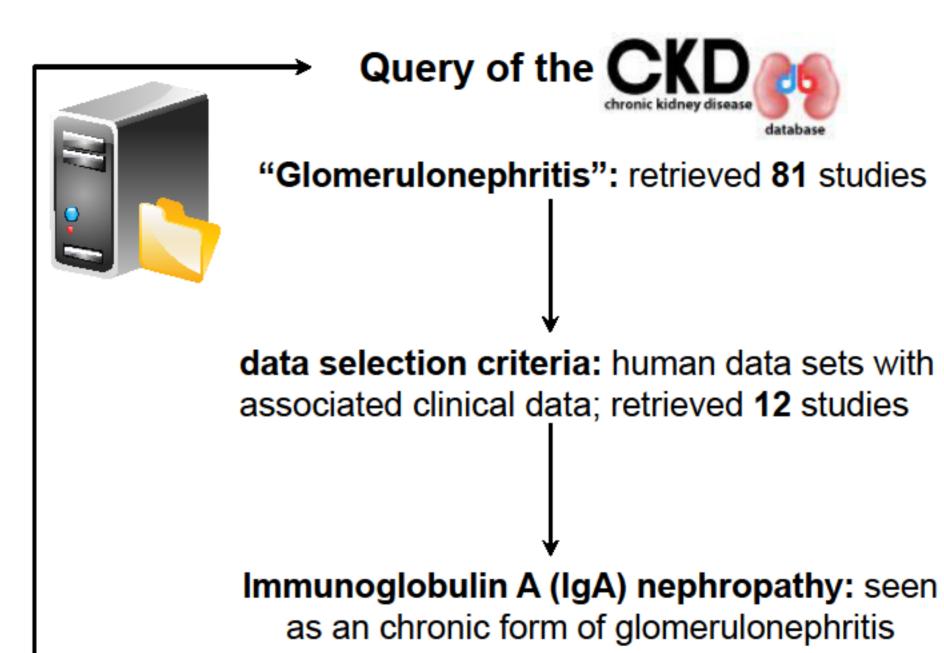
Institute of Cardiovascular and Medical Sciences (ICAMS), University of Glasgow, Glasgow, G12 8TA, UK

\*mail to m.fernandes.1@research.gla.ac.uk







# Background

### stage classification based on the estimated glomerular filtration rate (eGFR)

Chronic kidney disease (CKD) is a term that encompasses all degrees of decreased renal function, from damaged at risk through mild, moderate, and severe chronic kidney failure. CKD is a worldwide public health problem.







## Methods

#### Dataspace description

Table 1 Dataspace description of the experimental setup of studies included in in the analysis. Only human data was used from IgA nephropathy patients. Multi-omics platforms were used, such as: seven proteomics studies, three miRNAs studies and two metabolomic studies.

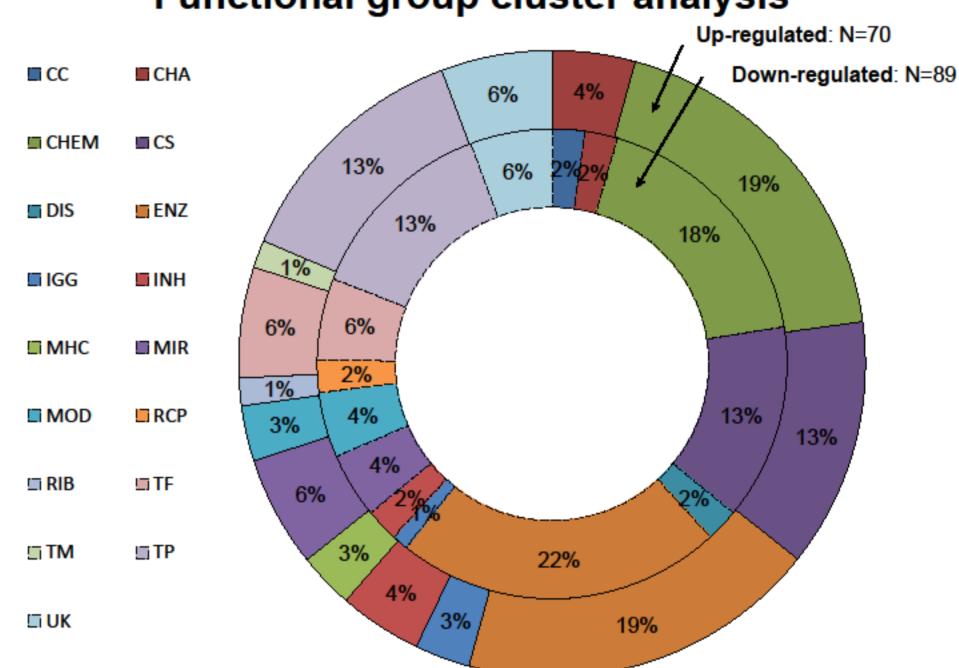
|          |       | N      | N         | disease |        |           |                         | type |
|----------|-------|--------|-----------|---------|--------|-----------|-------------------------|------|
| PMID     | total | (case) | (control) | control | source | subcell   | detection method        |      |
| 24339887 | 13    | n/a    | n/a       |         | urine  | whole     | GeLC-MS/MS              | PRO  |
| 24434790 | 10    | 5      | 5         | MCNS    | kidney | glomeruli | MALDI-TOF/TOF           | PRO  |
| 16372274 | 25    | n/a    | n/a       |         | urine  | whole     | MALDI-TOF-MS            | PRO  |
| 23577616 | 33    | 19     | 14        |         | urine  | whole     | MALDI-TOF-MS            | PRO  |
| 18095357 | 38    | 18     | 20        | healthy | urine  | whole     | nano-HPLC-ESI-<br>MS/MS | PRO  |
| 24244321 | 61    | 26     | 35        | healthy | urine  | whole     | 1H NMR                  | MET  |
| 22522762 | 58    | 35     | 23        | healthy | blood  | serum     | 1H NMR                  | MET  |
| 20364043 | 56    | 43     | 13        |         | urine  | whole     | qRT-PCR                 | MIR  |
| 19901913 | 63    | 43     | 20        |         | kidney | biopsy    | qRT-PCR                 | MIR  |
| 25279147 | 12    | 8      | 4         | healthy | kidney | biopsy    | MALDI TOF/TOF           | PRO  |
| 21694443 | 63    | 43     | 20        | biopsy  | kidney | whole     | RT-qPCR                 | MIR  |
| 21595033 | 12    | 5      | 7         | healthy | urine  | exosomes  | LC-MS/MS                | PRO  |

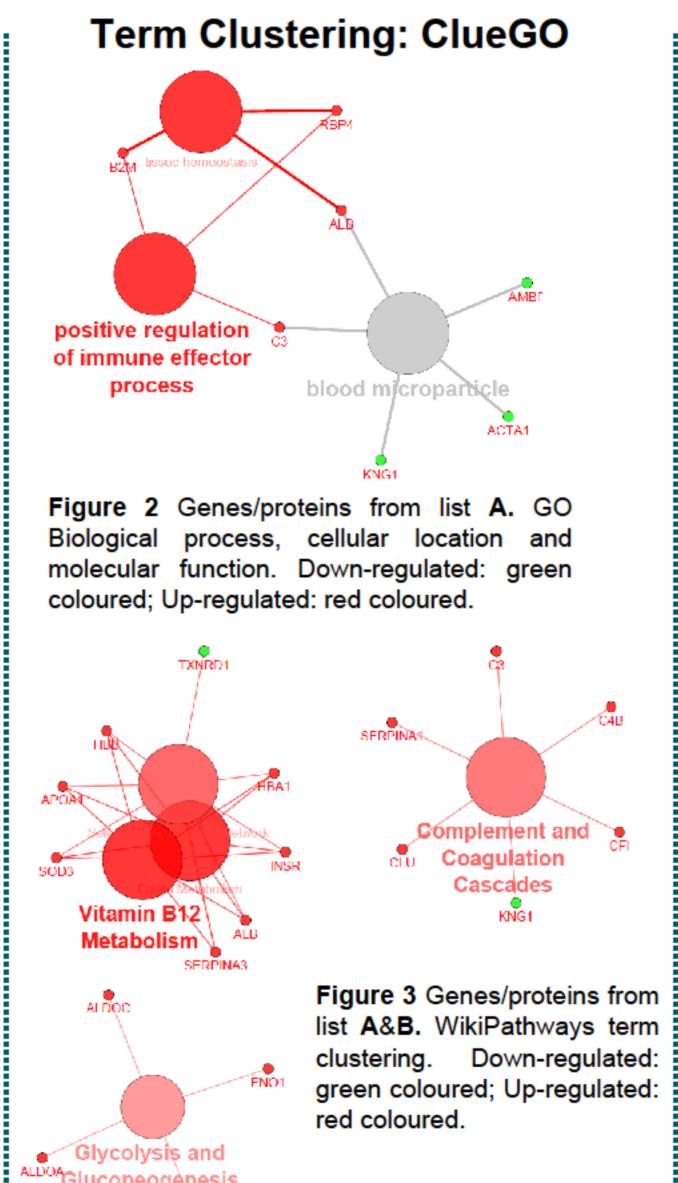
#### Data pre-processing

234 molecular entries (redundant) combine repeats within studies 200 molecular entries (non-redundant) data thresholding based on fold-change values **159** differentially expressed molecules Split into two lists:

molecules found more than once and Bmolecules found less than once across the datasets

# Functional group cluster analysis





Figure 1 Functionality tag clustering. CC: cell cycle (turnover, mitosis, meiosis); CHA: chaperone, chaperonin; MET: metabolite; CS: cell shape (cytoskeleton, cell adhesion, morphology, cell junction, cellular structures, extracellular matrix); DIS: disease; ENZ: enzyme, enzymatic properties; IGG: immunoglobulin; INH: inhibitor (protease, kinase, other enzymes, pathways); MHC: major histocompatibility complex component/protein cluster (MHC, HLA); MIR: microRNA; MOD: modulator, regulator; RCP: receptor; RIB: ribosome; TF: transcription and translation, gene regulation; TM: transmembrane; TP: transport, storage, endocytosis, exocytosis, vesicles; UK: unknown.

and gens/proteins form both list A&B.

# Results: meta-analysis

Table 2 Expression correlation of the molecules found more than once across the datasets (list A). Down-regulated: green coloured; Up-regulated: red coloured.

| molecule             | exp1   | exp2   | exp3    |
|----------------------|--------|--------|---------|
| ALB                  | 3.85   | 11.46  | 48.53   |
| KNG1                 | -20.00 | -1.19  | -114.63 |
| A1A                  | 8.33   | 780.48 | 0       |
| ALDH2                | -2.13  | -1.94  | 0       |
| C3                   | 1.70   | 3.41   | 0       |
| UMOD                 | -2.52  | -1.11  | 0       |
| MIR192               | 2.00   | 0      | 0       |
| MIR200C              | -2.00  | 0      | 0       |
| MIR205               | 2.00   | 0      | 0       |
| AMBP                 | 1.90   | -4.17  | -50.90  |
| B2M                  | 31.00  | 2.99   | -1.21   |
| ACTA1                | -41.88 | 2.76   | 0       |
| HSPG2                | 1.56   | -5.00  | 0       |
| RBP4                 | 52.00  | -2.78  | 0       |
| MIR141               | 2.00   | -2.00  | 0       |
| D-3-hydroxy-butyrate | 1.21   | 0      | 0       |
| Alanine              | 1.02   | 0      | 0       |
| L-valine             | -1.22  | 0      | 0       |
| L-lysine             | 1.07   | 0      | 0       |
| L-isoleucine         | -1.34  | 0      | 0       |
| glycine              | 1.07   | 0      | 0       |
| 3-methylhistidine    | -1.52  | 0      | 0       |
| tyrosine             | -1.11  | 0      | 0       |
| glutamine            | -1.03  | 0      | 0       |



# miRNA analysis: CluePedia Figure 4 miRNAs from list A and their predicted targets (miRanda v5). Down-regulated: green coloured; Up-regulated: red coloured. ALDOC Glycolysis / Gluconeogenesis Figure 5 miRNAs and genes/proteins from list A&B and their predicted

targets (miRanda v5). Down-regulated: green coloured; Up-regulated: red coloured.

## Integrative analysis: metabolite and genes/proteins

Table 3 Association to KEGG pathway metabolic maps of the metabolites

| Pathway                                     | Total | Expected | Hits | P.Value  |
|---------------------------------------------|-------|----------|------|----------|
| Aminoacyl-tRNA biosynthesis                 | 87    | 1.277    | 9    | 2.70E-06 |
| Valine, leucine and isoleucine biosynthesis | 13    | 0.19082  | 4    | 2.58E-05 |
| Alanine, aspartate and glutamate metabolism | 56    | 0.82198  | 6    | 0.000127 |
| Glycolysis / Gluconeogenesis                |       | 1.3357   | 7    | 0.000276 |
| Valine, leucine and isoleucine degradation  | 82    | 1.2036   | 6    | 0.001038 |
| Arginine and proline metabolism             | 102   | 1.4972   | 6    | 0.003215 |

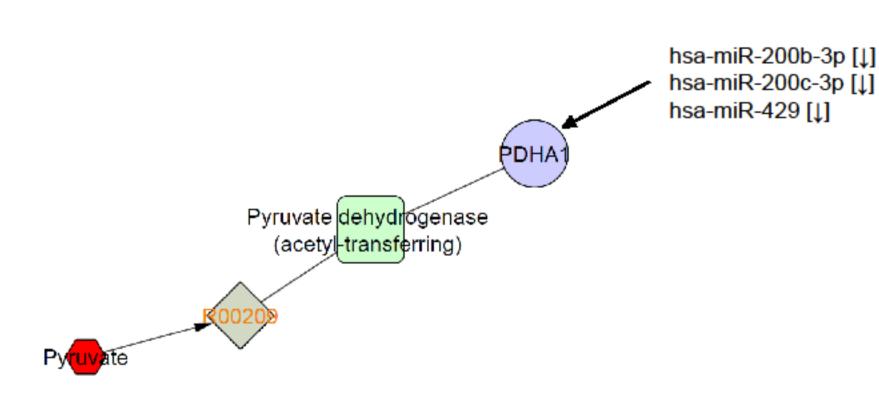



Figure 6 Snippet of one of the reactions from the Glycolysis and Gluconeogenesis (Metscape). Three miR from our list were found to regulate PDHA1 expression. The pyruvate compound was found decreased in expression.

Table 4 Path Visio analysis using list A. Involvement of the Complement and Coagulation cascades.

| Pathway                            | positive<br>(r) | measured<br>(n) | total | Z<br>Score | p-value<br>(permuted) |
|------------------------------------|-----------------|-----------------|-------|------------|-----------------------|
| Complement and Coagulation         | (1)             | (11)            | total | 00010      | (permateu)            |
| Cascades                           | 3               | 6               | 65    | 2.91       | 0.001                 |
| Bile acid and bile salt metabolism | 1               | 1               | 229   | 2.71       | 0.004                 |
| Formation of Fibrin Clot (Clotting |                 |                 |       |            |                       |
| Cascade)                           | 1               | 1               | 162   | 2.71       | 0.005                 |
| SREBP signalling                   | 1               | 1               | 77    | 2.71       | 0                     |

## Discussion & Conclusions

- Multidimensional -omics data can be used to construct models of molecular interaction networks, using both prior and de novo knowledge, therefore linking genes with disease based on genome-wide association studies, miRNAs and mRNAs targets, protein-DNA interactions, protein-protein interactions, protein-substrate binding, metabolic pathway interactions and drug-target interactions, where these molecular entities are represented as nodes and their interactions as edges;
- > As known IgAN encompasses two phases: acute and a chronic, in which complement components (C3, C4, C5) and CFI leads to leukocyte recruitment that in this way leads to damage to the glomerular cells. On the other side, coagulation factors leads to fibrin deposition and crescent formation.

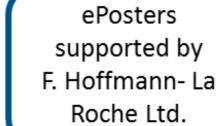


ALDOB



## References




http://www.padb.org/ckddb

### Acknowledgments

The research leading to these results has received funding from the European Union's Seventh Framework Programme FP7/2007-2013 under grant agreement FP7-PEOPLE-2013-ITN-608332











