TYPE 2 DIABETIC PATIENTS WITH NON ALBUMINURIC

KIDNEY DISEASE HAVE SLOWER GFR DECLINE

- AN OBSERVATIONAL, 24-MONTH PROSPECTIVE COHORT STUDY

Ivo Laranjinha^{1,2}, Patrícia Matias^{1,2}, Patrícia Branco^{1,2}, Sofia Mateus³, Carolina Gouveia³, Ana Lourenço³, José Guia³, Luís Campos³, José Diogo Barata¹ ¹ Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Carnaxide, Portugal.

² Nova Medical School | Faculdade de Ciências Médicas.

³ Department of Internal Medicine, Hospital S. Francisco Xavier, Centro Hospitalar de Lisboa Ocidental, Carnaxide, Portugal.

INTRODUCTION

- Diabetic kidney disease (DKD) is the main cause of end stage renal disease (ESRD) in developed contries^{1, 2};
- The development of kidney in type 2 diabetics is associated

METHODS AND POPULATION

- Observational 24-month prospective cohort study of 74 type 2 diabetic patients with GFR < 60 mL/min
- Albuminuria was defined as a random urinary albumin/creatinine ratio (ACR) \geq 30 mg/g

with increased cardiovascular (CV) and mortality risk³;

Albuminuria was considered as the first clinical sign of DKD, however rising evidence has shown that an important number of diabetic patients had a decreased glomerular filtration rate (GFR) without significant albuminuria⁴.

AIMS

Evaluate the renal and CV outcomes in type 2 diabetic patients having declined GFR with and without albuminuria.

- Two groups according to their albuminuric status:
 - Non-albuminuric DKD (NA-DKD): n = 31 (42%)
 - Albuminuric DKD (A-DKD): n = 43 (58%)

Table I: Baseline characteristics

74.4 ± 8.9
44 (59.5%)
17 (11-28.5)
68 (91.9%)
49.1 (11.5-163.3)
45 (34.8-52.3)
15 (20.3%)

* Values are: mean ± SD, median(interguartile range) or frequencies[n(%)]

RESULTS

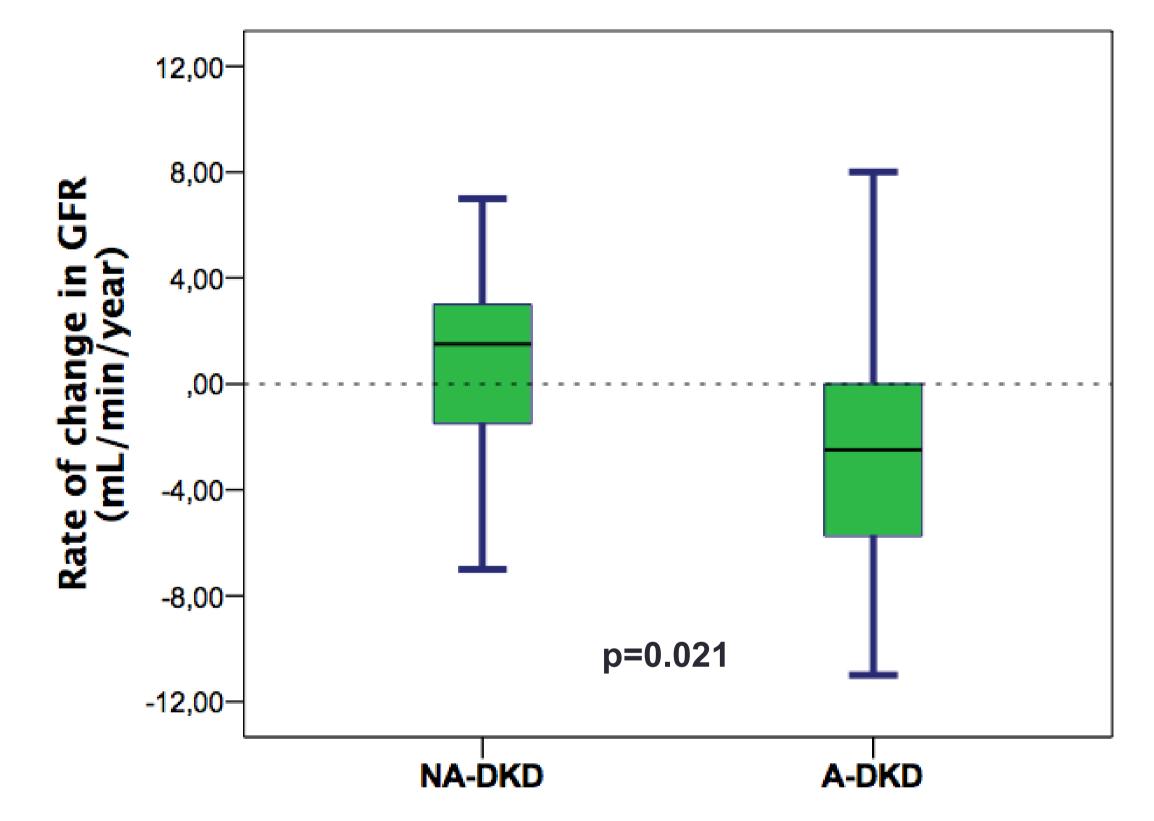

Age, gender, duration of DM, body mass index, smoke habits, metabolic control of DM, HTN prevalence and baseline GFR were not different between groups

Table II: Univariate analysis for the development of main outcomes.

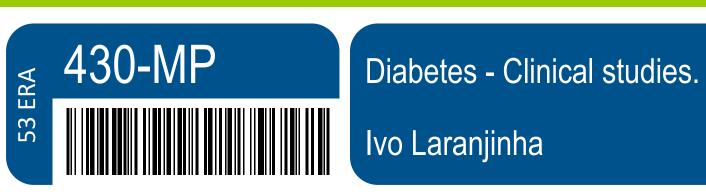
	NA-DKD (n=31)	A-DKD (n=43)	р
GFR, mL/min	39 (30.3-50.8)	38 (28-51)	ns
Rate of change in GFR, mL/min/year	+0.5 (-1.75; +3.25)	-2.4 (-6.0; +0.5)	0.021
Doubling SCr or ESRD	0	7 (17.5%)	0.03
Haemoglobin, g/dL	12.2 ± 1.4	12.8 ± 1.7	ns
Systolic pressure, mmHg	130.7 ± 24.4	130.8 ± 23.3	ns
Diastolic pressure, mmHg	65.8 ± 9.2	67.0 ± 10.7	ns
Number of hypotensive drugs	3 (2.0-3.3)	3 (2.0-4.0)	ns
Diabetic Retinopathy	5 (19.2%)	10 (23.8%)	ns
CV events (Acute coronary syndrome or cerebrovascular accident) during the followup	2 (7.7%)	4 (9.8%)	ns

'Values are: mean ± SD, median(interquartile range) or frequencies[n(%)]

Rate of Change in GFR

This association was confirmed in a multivariate analysis adjusted to age, gender, baseline SCr and HTN (Linear **Regression linear (F 5,57)=2.098, p=0.024)**

CONCLUSIONS / DISCUSSION


- The evolution of CKD in diabetic patients with non-albuminuric phenotype is more indolent, with a slower decline of GFR
- According to the previous studies^{4, 5}, albuminuria > 30 mg/day was associated to a higher risk of doubling creatinine or ESRD
- At the 24-month follow-up, we did not find any difference amongst the other outcomes
- This knowledge could have screening, therapeutic and prognosis implications, which must be investigated in randomized controlled studies

REFERENCES

1. https://www.renalreg.org/reports/2014-seventeenthannual-report/ (Acedido em Abril de 2015) 2. Schaubel DE, Morrison HI, Desmeules M, Parsons DA, Fenton SS. End-stage renal disease in Canada: prevalence projections to 2005. CMAJ 1999; 160: 1557-63. 3. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302-8.

4. Porrini E, Ruggenenti P, Mogensen CE, Barlovic DP, Praga M, Cruzado JM, et al. Non-proteinuric pathways in loss of renal function in patients with type 2 diabetes. lancet Diabetes Endocrinol. Elsevier Ltd; 2015;3(5):382–91. 5. Berhane AM, Weil EJ, Knowler WC, Nelson RG, Hanson RL. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. Clin J Am Soc Nephrol. 2011;6(10):2444–51.

CONTACT OF THE FIRST AUTHOR: ivolaranjinha@gmail.com

DOI: 10.3252/pso.eu.53era.2016

