

Relapsed DLBCLs present frequent copy number variations of genes involved in lymphomagenesis with different pattern between early- and late-relapsed DLBCLs

J. Broséus¹, S. Hergalant¹, N. Mounier², P. Feugier³, C. Gisselbrecht⁴, C. Thieblemont⁴, R. Houlgatte¹.

¹ U954 N-GERE, Inserm, Nancy, France, ² Onco-hématology, University Hospital of l'Archet, Nice, France, ³ Hematology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France, ⁴ APHP, Hemato-oncology department, Hospital of Saint-Louis, Paris Diderot University- Sorbonne Paris-Cité, Paris, France.

The authors are supported by fondation Nelia et Amedeo Barletta, Paris, France.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. Despite major advance in frontline treatment, a significant proportion of patients will experience treatment failure.

- From 396 patients with relapsed DLBCL included in the CORAL trial⁽²⁾, frozen biopsies were available for a total of 39 patients (19 early and 20 late relapses).
- Copy Number Variants (CNV) of the 39 samples were determined by high-resolution array-based CGH using the Affymetrix SNP 6.0 platform, which interrogates 1,800,000 copy number probes spaced at mean 1.8 kb intervals throughout the human genome. **Total copy numbers** were computed according to the CRLMM algorithm⁽³⁾. In order to remove artifactual values, we calculated the median value of the signal within a sliding window of 18 kb.
- Early relapses occur within the first year after the first-line treatment.
- Late relapses occur after 1 year or more. -

Prognosis is poor in both cases, and it is worse in earlyrelapsed DLBCLs.^(1,2)

Study objectives

The present study aims at expanding our knowledge in the number and type of genetic alterations present in early- and late-relapsed DLBCLs by integrating structural variants with gene expression profiles.

Gains and losses of copy number were defined by a median copy number \geq 2.5 and \leq 1.5, respectively.

Gene	Function	Chr.	Early relapses			p-value			
			Gains	Normal	Losses	Gains	Normal	Losses	
CD58	Immunity	1	0	16	3	2	18	0	0.07
ІТРКВ	BCR pathway	1	0	17	2	2	17	1	0.60
ID3	BCR pathway	1	0	17	2	1	19	0	0.35
NOTCH2	NOTCH pathway	1	0	18	1	0	20	0	0.48
XPO1	Cell cycle	3	2	16	1	2	17	1	1
MYD88	NFKB pathway	3	1	17	1	0	18	2	1
BCL6	Germinal center	3	0	18	1	2	17	1	0.73
PRDM1	Cell cycle	6	4	11	4	3	15	2	0.56
TNFAIP3	NFKB pathway	6	0	16	3	1	15	4	1
PIM1	NFKB pathway	6	2	16	1	0	20	0	0.10
IRF4	BCR pathway	6	3	15	1	1	19	0	0.21
EZH2	Epigenetic	7	0	19	0	1	18	1	1
BRAF	MAP kinase	7	0	19	0	0	20	0	1
CARD11	NFKB pathway	7	0	19	0	3	17	0	0.23
MFHAS1	Cell cycle	8	1	18	0	1	19	0	1
MYC	Cell cycle	8	1	17	1	2	18	0	1
NOTCH1	NOTCH pathway	9	2	16	1	1	19	0	0.40
CDKN2A	Cell cycle	9	3	8	8	3	14	3	0.13
CDKN2B	Cell cycle	9	3	8	8	3	14	3	0.42
SYK	BCR pathway	9	0	18	1	0	20	0	0.48
KLF4	Apoptosis	9	0	18	1	0	20	0	0.48
ІВТК	BCR pathway	12	2	12	5	2	14	4	0.88
MLL2	Epigenetic	12	3	15	1	1	19	0	0.21
STAT6	JAK/STAT	12	3	16	0	1	19	0	0.34
FOXO1	BCR pathway	13	1	14	4	2	15	3	1
B2M	Immunity	15	1	18	0	1	15	4	0.10
CREBBP	Epigenetic	16	0	17	2	0	20	0	0.23
SOCS1	JAK/STAT	16	2	17	1	0	20	0	0.23
CIITA	Immunity	16	1	18	0	0	20	0	0.48
ТР53	Apoptosis	17	1	16	2	0	15	5	0.40
GNA13	Cell cycle	17	1	18	0	0	19	1	1
CD79B	BCR pathway	17	1	18	0	3	17	0	0.60
BCL2	Cell cycle	18	3	14	2	5	15	0	0.45
TCE2	DCD mathurau	10	2	17	0	1	10	1	1

		Early relapse		Late relapse				
Gene	Function	Gains	Normal	Losses	Gains	Normal	Losses	p-value
LOC100507489	Antisense RNA	0	19	0	3	11	6	0.001
RAB11AP2	Ras oncogene family pseudogene	6	12	1	0	20	0	0.003
LGALS9C	Galectine family	9	9	1	2	9	9	0.004
LOC646214	P21 Protein (Cdc42/Rac)-Activated Kinase 2 Pseudogene	4	15	0	4	8	8	0.0059
CCHCR1	Keratinocytes proliferation and differenciation	6	10	3	0	18	2	0.0063
OR2A1	G-protein-mediated transduction of odorant signals	6	7	6	2	17	1	0.0087
OR2A9P	G-protein-mediated transduction of odorant signals	5	9	5	0	17	3	0.0130
KANSL1-AS1	Histone acetylation ; MLL and ACL complexes	8	10	1	1	16	3	0.0139
OR4K2	G-protein-mediated transduction of odorant signals	1	13	5	6	14	0	0.0145
KIAA1804	MAP kinase activity Negative regulator of TLR4 signaling	2	12	5	1	19	0	0.0176
IGHVII-2-1	Immunoglobulin pseudogene	0	18	1	5	12	3	0.0177
GPR133	G-protein coupled receptor activity	4	14	1	0	20	0	0.0201
RMST	Long non-coding RNA class	4	14	1	0	20	0	0.0201
RP11-110L15.2	LincRNA	4	14	1	0	20	0	0.0201
RP11-116D17.2	LincRNA	4	14	1	0	20	0	0.0201
RP11-749H20.1	LincRNA	4	14	1	0	20	0	0.0201
RPL7P38	Ribosomal protein L7 pseudogene 38	4	14	1	0	20	0	0.0201
STX2	Epithelial-mesenchymal interactions and epithelial cell morphogenesis and activation	4	14	1	0	20	0	0.0201
TBX5	DNA-binding domain : T-box Transcription factors involved in the regulation of developmental processes	4	14	1	0	20	0	0.0201
TMEM132C	Transmembrane protein	4	14	1	0	20	0	0.0201
TMEM132D	Transmembrane protein Oligodendrocyte differentiation	4	14	1	0	20	0	0.0201
GPLD1	Glycosylphosphatidylinositol (GPI) degradation Sodium channel regulator activity	4	15	0	0	18	2	0.0201
АКТЗ	Protein serine/threonine kinase activity Metabolism, proliferation, cell survival, growth and angiogenesis Downstream mediator of the PI 3-K pathway	2	13	4	1	19	0	0.0201
FUT9	biosynthesis of Lewis X antigen Expression of CD15 in mature granulocytes	3	10	6	0	17	3	0.0458
CCDC59	Component of the transcription complexes of the pulmonary surfactant-associated protein-B and C	4	15	0	0	20	0	0.0471
FCRL2	Normal and neoplastic B cell development	3	15	1	0	20	0	0.0412
FLJ37505	LincRNA	3	15	1	0	20	0	0.0412
HSPA8P5	Heat shock protein 8 pseudogene 5	3	15	1	0	20	0	0.0412
HSPE1P20	Heat shock protein 1 pseudogene 20	3	15	1	0	20	0	0.0412
MED13L	RNA polymerase II transcription cofactor activity	3	15	1	0	20	0	0.0412
NAV2	Cellular growth and migration	4	15	0	0	20	0	0.0412
PRB3	Proline-rich salivary protein Bacterial receptor	4	15	0	0	20	0	0.0412
RP11-781A6.1	LincRNA	4	15	0	0	20	0	0.0412
RP11-983C2.1	Known processed pseudogene	3	15	1	0	20	0	0.0412
RP4-765H13.1	LincRNA	3	15	1	0	20	0	0.0412
TMTC2	Transmembrane and tetratricopeptide repeat containing 2	4	15	0	0	20	0	0.0412
TRHDE	Thyrotropin-releasing hormone degrading enzyme Metallopeptidase and aminopeptidase activity	4	15	0	0	20	0	0.0412
ZNF177	Transcriptional regulation	0	19	0	2	15	3	0.0412
CDKN2B-AS1	Antisense RNA ; interact with polycomb repressive complex-1 (PRC1) and -2 (PRC2) Regulator for epigenetic transcriptional repression	2	11	6	1	18	1	0.0497

Figure 1: Genomic alterations in early- and late-relapsed DLBCLs. Only CNVs of a size \geq 2 Mb are represented (losses in green and gains in red).

Results

The average total CNV number for the whole group was 15. Chromosomes 1, 2, 3, 6, 12 and 18 were the most frequently altered compared to other chromosomes (p=6x10⁻⁴). We noted a great heterogeneity of CNV numbers between individuals (range 0-67 CNVs) but no difference between early-relapsed and late-relapsed DLBCLs (average total CNVs 15 and 16 respectively; p-value = 0.8). Frequent CNVs involved ITPKB, XPO1, BCL-6, IRF4, IBTK, **PRDM1, TNFAIP3, FOXO1, TP53** and **BCL2** genes but with no systematic difference between late-relapsed and earlyrelapsed DLBCLs. **Deletions of CDKN2A** was a common event in early-relapsed -**DLBCLs**. Forty four genes showed significant CNV difference between early-relapsed and late-relapsed DLBCLs.

Table 1: Alterations in genes involved in lymphomagenesis.

Examples Figure 2: of genomic alterations affecting genes involved in lymphomagenesis.

Table 2: Genes with differential distribution of CNVs between early and late relapses.

Figure 3. a) CNVs affecting AKT3 are differentially distributed among earlyand late-relapsed DLBCLs. b) Deletions duplications have subsequent and consequences on AKT3 expression level.

Conclusion

In this series, we found an equivalent number of CNVs among and late-relapsed DLBCLs. Genes involved in earlylymphomagenesis frequently exhibited CNVs. CDKN2A showed a high frequency of deletions in early-relapsed DLBCLs. We identified a list of 44 genes, which abnormalities were differentially distributed among early- and late-relapsed DLBCL with subsequent consequence on expression level.

References

Aggressive B-cell lymphoma

BROSÉUS Julien

164-P

.3icml

1. Thieblemont C, Gisselbrecht C. Second-line treatment paradigms for diffuse large B-cell lymphomas. Curr Oncol Rep. 2009;11:386-93. 2.Gisselbrecht C, Glass B, Mounier N, Singh Jill D, Linch DC, Trneny M et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol 2010; 28:4184-90.

3. Scharpf RB, Irizarry RA, Ritchie ME, Carvalho B and Ruczinski I. Using the R package CRLMM for genotyping and copy number estimation. J Stat Softw 2011; 40:1-32.

stitut nationa de la santé et de la recherche médica

