OSTEONECTIN (SPARC) EXPRESSION IN VASCULAR CALCIFICATION: IN VITRO AND EX VIVO STUDIES

Paola Ciceri¹, Francesca Elli¹, Laura Cappelletti¹, Delfina Tosi², Federica Savi², Gaetano Bulfamante² and Mario Cozzolino¹

¹Laboratory of Experimental Nephrology and ² Unit of Human Pathology, Departement of Helath Sciences, University of Milan, Italy

Background and Aim

- SPARC (secreted protein, acidic and rich in cysteine) is a non collagenous protein of bone matrix involved in cell differentiation, tissue remodeling and morphogenesis, secreted by fibroblasts, endothelial cells and vascular smooth muscle cells (VSMCs)
- VSMCs challenged with high phosphate (Pi) undergo to an active transformation in osteoblastic-like cells and mineralize their extracellular matrix: this process is called vascular calcification (VC)
- SPARC expression is modulated in calcific conditions: in vitro, it inhibits hydroxyapatite crystals formation, whereas SPARC knock-out prevents arterial calcification
- · Since the role of SPARC in VC is not well elucidated, we tried to clarify its potential contribution in vitro and ex vivo studies

Materials & Methods

- Rat VSMCs were cultured and challenged with inorganic phosphate (5 mM Pi) to induce calcification. (Calcification medium: DMEM high glucose,12% FBS, 10 mM sodium pyruvate, 100 U ml-1 penicillin and 0.1 mg ml-1 streptomycin and 50 ug/ml AA). Human arteries were isolated from adult with and without macroscopically evident atherosclerotic plaques
- quantified by Calcium (Ca) deposition colorimetrical method and evaluated by histological analysis (Von Kossa staining)
- SPARC and Ki-67 protein expression was analyzed by immunohistochemistry
- Total RNA was extracted from rat VSMCs and Core Binding Factor alpha-1 (Cbfα-1/RUNX2) mRNA expression was evaluated by TaqMan PCR using β-actin housekeeping gene.

Pi-induced Calcium Deposition in VSMCs Is Time-Dependent

SPARC Expression and Calcium Deposition Peak 7 Days After Pi Challenge, Whereas Proliferation Has a Different Time-course

Day 4 Day 7 SPARC

5 mM Pi

RUNX2 mRNA Expression Peaks 7 Days after Pi Challenge

SPARC is Downregulated in Absence of the

Ki-67

Pro-calcifing Factor Ascorbic Acid

AA no AA 35 mg protein ug Ca+

[Pi], mM

Conclusions

no AA

Our in vitro studies suggest that SPARC could have a potential procalcifying role in VC since its expression increases concomitantly with the massive Ca deposition and osteoblastic differentiation.

Moreover, SPARC in vitro expression is down-regulated in the absence of the pro-calcifying factor ascorbic acid.

Our ex vivo studies demonstrate that, with the progression of atherosclerosis, SPARC expression is up-regulated in the residual VSMCs at sites of arterial calcification, validating the hypothesis that SPARC actively partecipates to the calcification process.

SPARC Expression Increases in Human Arteries in Proximity of Site of Calcification

References

Cozzolino M et al. Pathogenesis of vascular calcification in chronic kidney disease. Kindey Int 2005;68:429-36.

Termine JD et al. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981; 26:99-105.

Wallin R et al. Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med Res Rev. 2001; 21:274-301.

Dhore CR et al. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2001; 21:1998-2003.

Ciceri P et al. Combined effects of ascorbic acid and phosphate on rat VSMCs osteoblastic differentiation. Nephrol Dial Transplant. 2012; 27:122-7.

*p<0.01