

Effect of a single maximal exercise bout on monocyte subsets in chronic kidney disease

A.H. Van Craenenbroeck^{1,2}, E. M. Van Craenenbroeck^{1,3}, K. Van Ackeren¹, C. J. Vrints^{1,3}, V.Y. Hoymans¹, M. M. Couttenye²

(1) Laboratory of Cellular and Molecular Cardiology, University of Antwerp; (2) Department of Nephrology & (3) Department of Cardiology, Antwerp University Hospital

INTRODUCTION AND OBJECTIVES

Monocytes, the key players in inflammation, consist of 3 functionally distinct subtypes 1

10 MIN POST

- highly phagocytic Classical (Mon I)
- pro-angiogenic, production of pro- and anti-inflammatory cytokines, antigen presentation Intermediate (Mon2)
- antigen presentation, patrolling endothelial-blood interface Nonclassical (Mon3)
- Chronic low-grade inflammation contributes to the high cardiovascular risk of CKD patients, which can be reduced by exercise training
- The response of monocyte subsets to a single exercise bout is blunted in the setting of chronic heart failure

MCP-1, IL-6

AIM: to evaluate the response of monocyte subsets and II-6 and MCP-I to a single maximal exercise bout in CKD patients compared to healthy subjects

METHODS Study design and clinical assessment

20 CKD patients 15 age-matched healthy subjects

CARDIOPULMONARY **EXERCISE TESTING**

Echocardiography Venous blood sampling

Venous blood sampling

Laboratory assessment

Multiparametric flow cytometry² Mon1:CD14++CD16-CCR2+ Mon2: CD14++CD16+CCR2+ Mon3: CD14+CD16++CCR2-

2. Identification of monocytes **ELISA**

3. Identification of monocyte subsets Location of Mon I-2-3 on CD I4 CD I6 plot

RESULTS

Baseline characteristics

Table 1. Baseline characteristics

	HS (n=15)	CKD (n=20)	P-value
Age (yrs)	43.5 ± 5.0	51.3 ± 15.6	0.070
Sex (F/M)	6/9	12/8	0.200
Creatinin (mg/dl)	0.85 ± 0.19	1.73 ± 0.63*	<0.001
eGFR (ml/min/1.73m ²)	99.04 ± 11.31	44.42 ± 19.7*	<0.001
BMI	24.16 ± 2.26	26.12 ± 5.11	0.139
IL-6 (pg/mL)	1.04 ± 1.71	1.39 ± 1.45	0.526
MCP-I (pg/mL)	330 ± 163	446 ± 95*	0.013
Systolic BP (mmHg)	123.5 ± 13.4	130.6 ± 15.9	0.180
Diastolic BP (mmHg)	77.4 ± 9.4	77.1 ± 10.3	0.924
EF (%)	65.0 ± 0	62.9 ± 8.2	0.287
VO ₂ peak (ml/min/kg)	37.20 ± 9.04	25.54 ± 7.53*	<0.001
Peak heart rate (bpm)	171 ± 14	153 ± 26*	0.017
Max workload (Watt)	249 ± 83	152 ± 50*	0.001

Table 2. Monocyte subset distribution

	HS (n=15)	CKD (n=20)	P-value
Monocyte count (cells/µl)	450.l ± 128.l	352.1 ± 103.7	0.017
%Mon I	88.09 ± 4.73	88.48 ± 4.27	0.802
%Mon2	4.51 ± 2.05	3.55 ± 1.69	0.142
%Mon3	7.38 ± 3.17	7.95 ± 3.61	0.631

Effect of a single maximal exercise bout

. Exclusion of doublets & dead cells

* p<0.05 vs pre CPET

Monocyte subsets: increase in %Mon2 and %Mon3 at the expense of %Mon1

Relation with VO₂peak

- %Change Mon I %Change Mon3
- %Change in MCP-1
- r=0.503, p=0.03r=0.509, p=0.002
- r=0.612, p<0.001 no relation with monocyte subset response

CONCLUSION

- Despite a lower exercise capacity and low-grade inflammation at baseline, CKD patients showed a comparable acute exerciseinduced change in monocyte subsets as healthy subjects
- Levels of MCP-I increased significantly in healthy subjects but remained unchanged in patients with CKD
- The monocyte subset response is characterized by an increase in pro-angiogenic Mon2 and pro-inflammatory Mon3, at the expense of Mon I
- These observations add insight into the dynamic inflammatory response to acute exercise in CKD, which contributes to unravelling the mechanisms underlying the long-term beneficial effects of exercise training.

REFERENCES

1.Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010 Oct 21;116(16):e74-80. 2. Shantsila E, Wrigley B, Tapp L, Apostolakis S, Montoro-Garcia S, Drayson MT, et al. Immunophenotypic characterization of human monocyte subsets: possible implications for cardiovascular disease pathophysiology. J Thromb Haemost. 2011 May;9(5):1056-66

