DECLINE OF RENAL FUNCTION AT LATER STAGES OF CHRONIC KIDNEY DISEASE: THE RELATIVE IMPORTANCE OF PRESCRIPTION MEDICATION

Fernando Caravaca-Fontán*, Lilia Azevedo, Boris Gonzales-Candia, Miguel A. Bayo, Enrique Luna, Francisco Caravaca Nephrology Departments *Hospital Ramón y Cajal, Madrid, and Hospital Regional Universitario Infanta Cristina, Badajoz. Spain

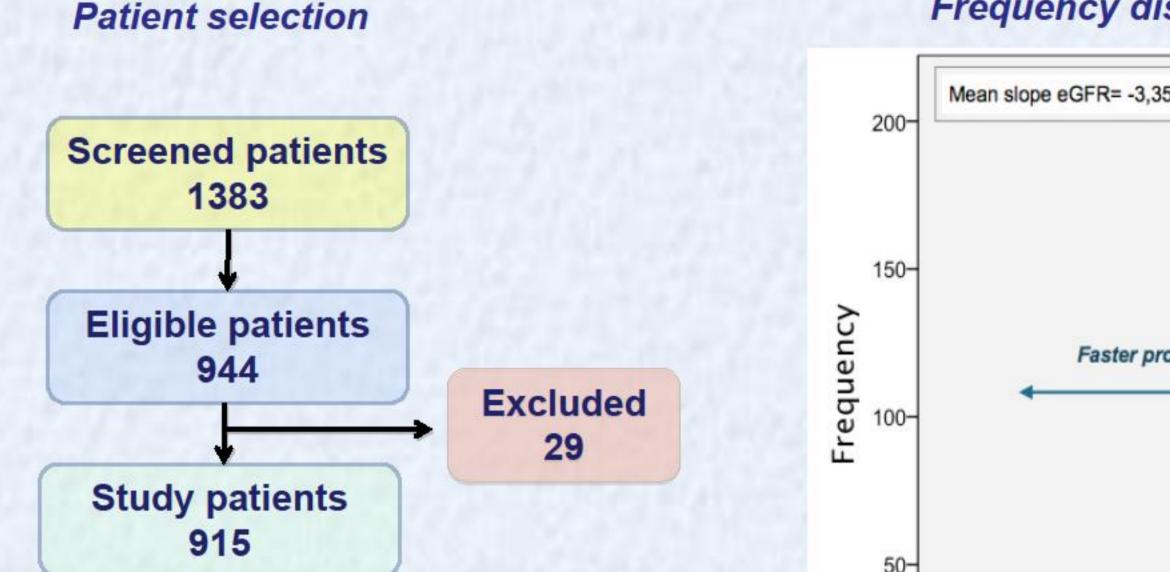
Introduction and Aims

Accelerated loss of renal function is a common finding at later stages of chronic kidney disease (CKD). Many studies have alerted about the potential influence of common prescription medication on CKD progression

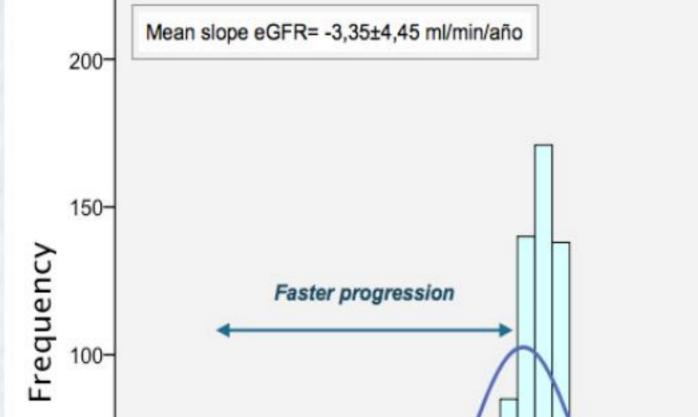
Aims: to determine the rate of decline of renal function in advanced CKD, factors associated with faster progression, and the relative importance of common prescription medication in this renal outcome

Patients and Methods

Longitudinal observational study in a cohort of adult patients with CKD stage 4 and 5 not on dialysis (2000-2014), who had at least 3 consecutive measures of eGFR (MDRD-4) in a follow-up period greater than 3 months. Patients with recent AKI or in ongoing treatment for glomerular disease or vasculitis were excluded.

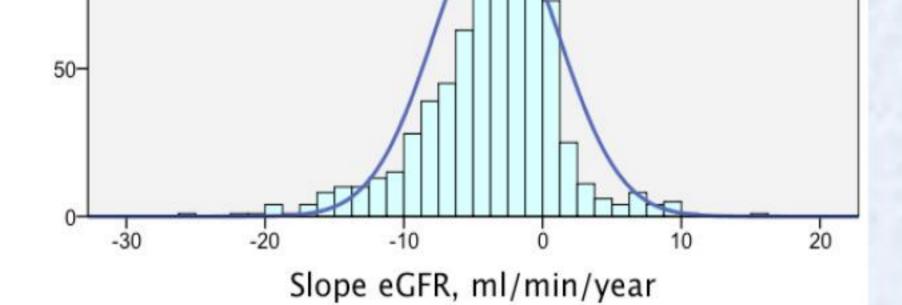

The rate of renal failure progression was assessed by the slope of the regression line of eGFR over time (days). Expressed as ± ml/min/1,73 m²/year.

• Outcome variables: slope eGFR (continuous variable), and faster progression (steeper than the mean slope value) (dummy variable).

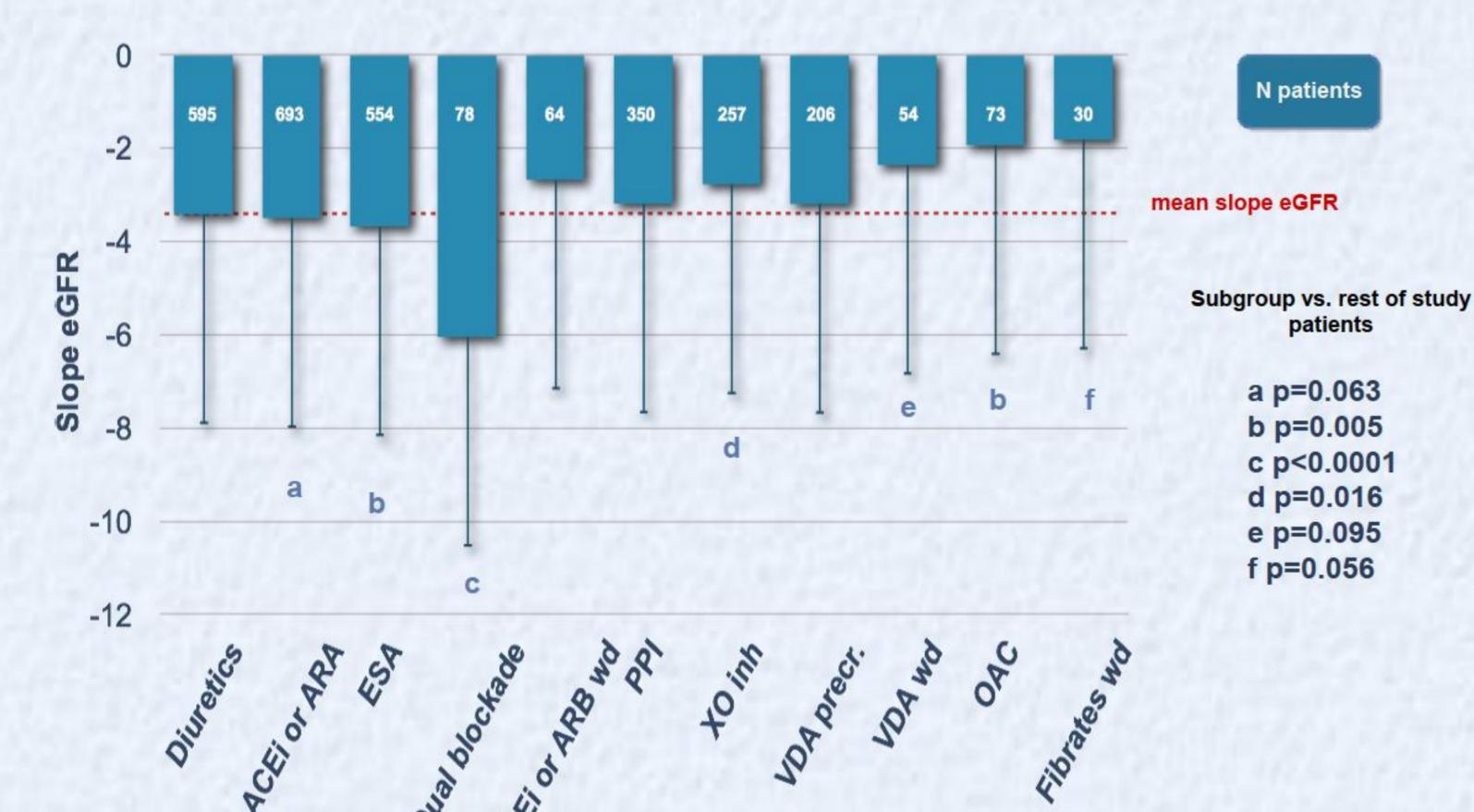

Covariates: demographic, BMI, diabetes, comorbidity index (Davies), smoking, SBP and DBP, proteinuria (24 h collection, g/g creatinine). Prescription medication included as potential determinants: diuretics, ACEi or ARB, dual blockade (ACEi+ARB or DRI), erythopoiesis stimulating agents (ESA), oral anticoagulants (OAC) (acenocumarol), xanthine-oxidase inhibitors (XOi) (allopurinol or febuxostat), proton-pump inhibitors (PPI), vitamin D analogues (VDA) (calcitriol or paricalcitol), ACEi or ARB withdrawal, and VDA withdrawal. All patients were treated for controlling hyperphosphatemia and acidosis.

• Statistical methods. Multiple lineal or logistic regression analysis. Johnson's relative importance of each potential determinant in the best regression models, and the results were expressed as percent contribution to multiple R

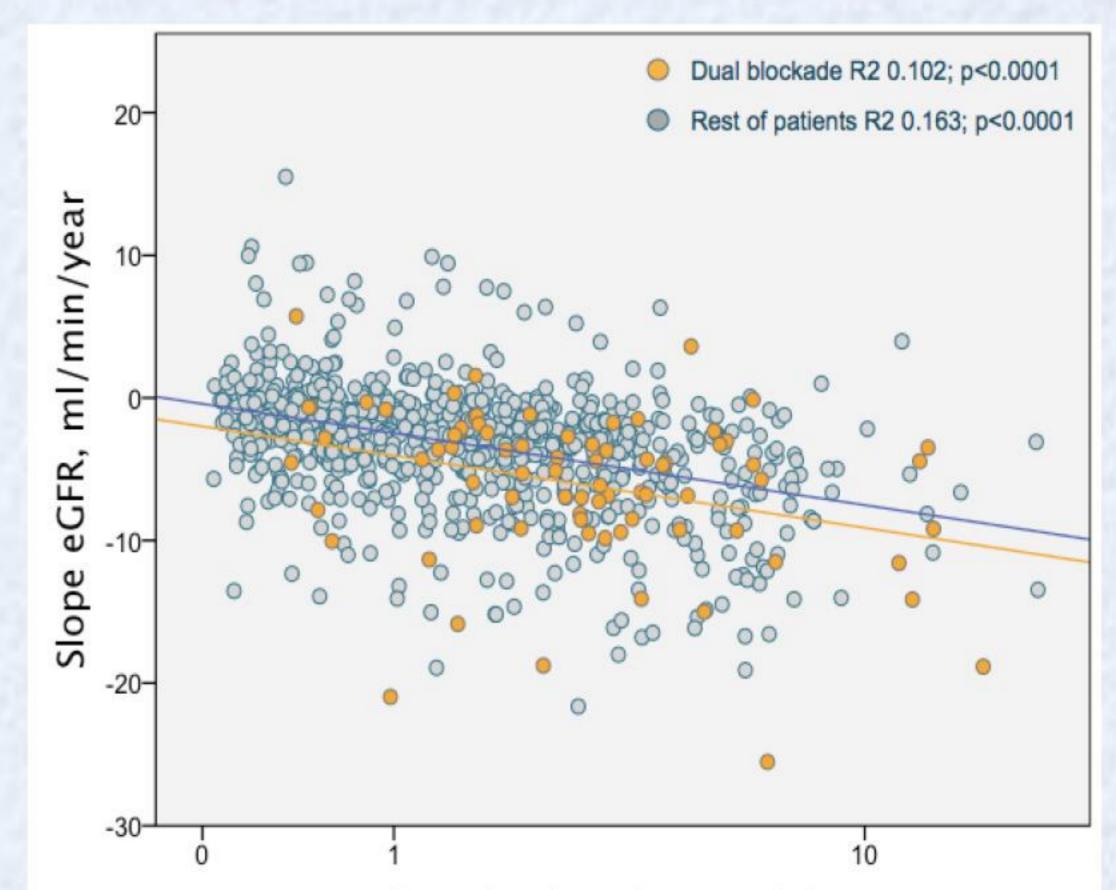
Results



Frequency distribution of slope eGFR



Clinical and biochemical characteristics of study patients


	Total	Slow progression	Fast progression	р
N patients	915	545	370	
Age, years	65±14	67±13	63±14	< 0.0001
Gender, m/f	475/440	274 / 271	201 / 169	0.229
Comorbidity Index	380/445/90	226/268/51	154/177/39	0.821
Diabetes mellitus	330 (36%)	189 (35%)	141 (38%)	0.289
Current smokers	157 (17%)	81 (15%)	76 (21%)	0.025
B.M.I., kg/m ²	29.5±5.8	29.8±5.9	29.1±5.8	0.089
Systolic BP, mmHg	158±27	154±26	163±27	< 0.0001
Diastolic BP, mmHg	87±14	86±15	88±14	0.003
Baseline eGFR, ml/min/1,73 m ²	14.7±4.5	14.6±4.6	14.8±4.5	0.517
Slope eGFR, ml/min/year	-3.35±4.45	-0.67±2.42	-7.28±3.78	< 0.0001
Serum uric acid, mg/dl	7.6±1.9	7.6±2.0	7.5±1.5	0.408
Serum total calcium, mg/dl	9.2±0.8	9.3±0.8	9.1±0.8	0.001
Serum phosphate, mg/dl	4.7±1.0	4.6±1.1	4.8±0.9	0.005
Serum albumin, g/dl	3.96±0.44	4.02±0.41	3.86±0.45	< 0.0001
Serum bicarbonate, mmol/l	21.5±4.0	21.6±4.1	21.4±3.9	0.453
PTH, pg/ml	263±216	257±228	273±198	0.256
Proteinuria, g/g creatinine	2.13±2.35	1.48±1.69	3.09±2.81	< 0.0001
N measures per patient	7 [5 – 11]	11 [6 – 14]	6 [4 - 8]	< 0.0001
Follow-up time, months	16 [8 - 30]	31 [12 - 40]	10 [6 - 17]	< 0.0001

Slope eGFR according to prescription medication

Linear regression between slope eGFR and proteinuria

Proteinuria, g/g creatinine

Multiple linear regression and relative weights analysis for slope eGFR

Covariate	Beta coeff.	Structure coeff.	Contribution multiple R	Р
Age, years	0.129	+0.303	8.2	<0.0001
B.M.I., kg/m ²	0.087	+0.158	3.7	0.005
Systolic Blood				
Pressure, mmHg	-0.136	-0.418	12.4	< 0.0001
Proteinuria, g/g				
creatinine	-0.343	-0.823	57.2	< 0.0001
Dual blockade	-0.101	-0.396	9.7	0.001
Fibrates withdrawal	0.083	0.134	2.5	0.005
ESA prescription	-0.086	-0.200	3.3	0.004
Oral anticoagulants	0.063	0.198	2.8	0.035

Multiple logistic regression for faster progression

Covariate	Odds Ratio	C.I. 95% OR	Р
Age, years	0.982	0.972 - 0.993	0.001
B.M.I., kg/m ²	0.962	0.938 - 0.987	0.004
Systolic Blood			
Pressure, x 10 mmHg	1.080	1.030 - 1.140	0.004
Proteinuria, g/g creatinine	1.416	1.302 – 1.540	<0.0001
Dual blockade	2.280	1.328 - 3.914	0.003
Analogues vitamin D withdrawal	0.462	0.228 – 0.936	0.032

Conclusions

In addition to highly expected risk factors for CKD progression, common prescription medication (e.g. dual blockade, fibrates, vitamin D analogues, etc.) are also significantly and independently associated with the rate of decline of renal function at later stages of CKD

Chronic Kidney Disease. Pathophysiology, progression & risk factors.

Francisco Caravaca

