INTRAVENOUS IRON SUCROSE AND OXIDATIVE

STRESS IN CHRONIC KIDNEY DISEASE STAGE 4 AND 5

Suman Karanth¹, Ravindra Prabhu², Manohar Bairy², Shankar P. Nagaraju², Ashok Bhat², Srinivas Kosuru², Rajeevalochana Parthasarathy², Shobha Kamath³, Hemanth K. Prasad³, Kapil P. Kallurwar³

- 1 Department of Medicine, Kasturba Medical College and Hospital, Manipal University, Manipal, India
- 2 Department of Nephrology, Kasturba Medical College and Hospital, Manipal University, Manipal, India
- 3 Department of Biochemistry, Kasturba Medical College and Hospital, Manipal University, Manipal, India

Introduction¹⁻⁴

The correction of iron deficiency anaemia in Chronic kidney disease (CKD) using intravenous iron therapy has been postulated to increase oxidative stress which may impact cardiovascular outcomes and mortality.

Objective

To assess the oxidant effect of intravenous(IV) iron sucrose in CKD stage 4 and 5 patients by estimating change in levels of highly sensitive C reactive protein (hsCRP), malondialdehyde (MDA) and myeloperoxidase (MPO) pre and post intravenous iron therapy.

Methodology

Study Design: Prospective Observational

Study duration 4 months

Study site: Department of Nephrology, Kasturba

Hospital, Manipal Inclusion criteria:

➤ Adult CKD stage 4 or 5 Patients not on dialysis with iron deficiency i.e. serum iron/Total iron binding capacity < 20% or serum Ferritin < 200 ng/L.

Exclusion criteria:

➤ Patients with infections, malignancy, received blood transfusions, previous IV iron therapy, Pregnancy, immunosuppressives up to 1 month prior, hypersensitivity to IV iron, liver disease

Data collection

hsCRP, MDA, MPO were measured using standard methods immediately prior to and 48 hours after a 100mg IV dose of iron sucrose

Data Analysis: on SPSS version 15.Wilcoxon signed rank test was used to compare medians and a p value less than 0.05 was considered significant.

Results & Discussion

Table 1: Demography

Total number of patients	32
Males	26 (81.3 %)
Number of patients with CKD stage 5	13 (40.6 %)
Diabetes mellitus	17 (53.1%)
Age (years)	55.3 ± 12.2
Creatinine clearance mean (ml/min)	16.7 ± 8.7
Serum albumin mean (g/L)	3.5 ± 0.6

Table 2: Mean Iron Indices

Iron saturation %	23.2 ± 12.2 %
Serum Ferritin (ng/L)	134.2 ± 117.7
Serum Ferrium (ng /L)	154.2 T 11/./

Changes in hsCRP, MDA, MPO after IV iron

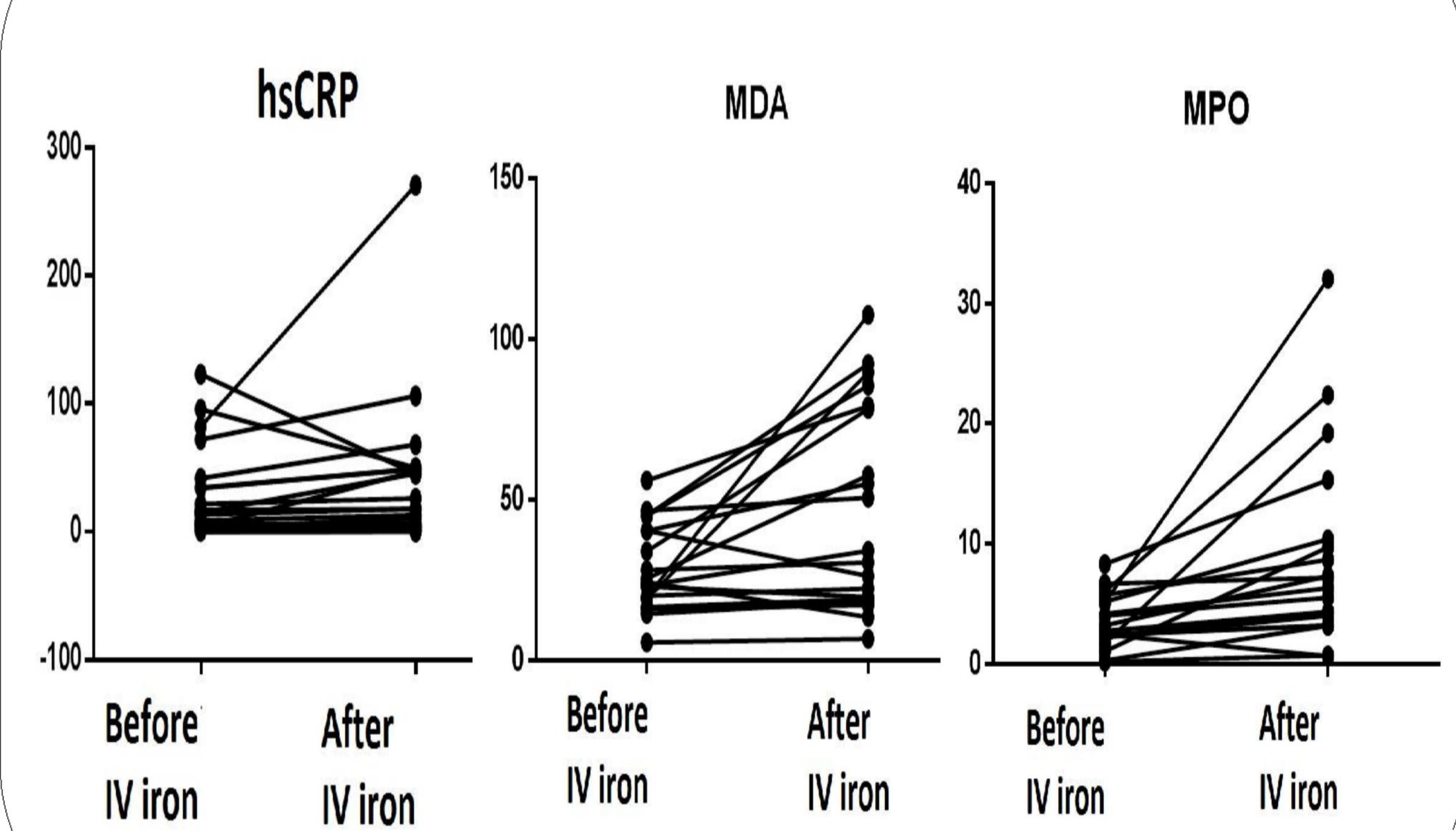


Table 3: Changes in hsCRP pre and post iv

nscrp pre and post iv				
NUMBER = 32		Pre	Post	
Median		5	6	
Minimum		0	0	
Maximum		123	271	
PEF	25	1	3	
RCENTILE	50	5	6	
Œ.	75	20.75	45	

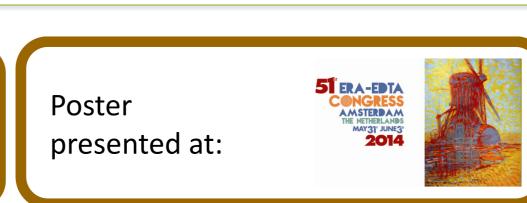
Table 4: Changes in MDA pre and post IV iron

pre and post IV Iron			
NUMBER = 21		Pre	Post
Median		26	30
Minimum		6	7
Maximum		56	108
PERCENTILE	25	20	20.5
	50	26	30
E	75	40	58

Table 5: Changes in MPO pre and post iv iron

pre and post iv iron				
	NUMBE	NUMBER = 21		Post
	Median	Median		5
	Minimu	Minimum		1
	Maximu	Maximum		32
•	PEF	25	2	3
	ERCENTILE	50	2	5
	Œ.	75	4.75	10

Table 6: Changes in hsCRP, MDA, MPO Pre and post IV iron sucrose in CKD stage 4 & 5


Oxidant stress parameters	Number of patients	Pre IV iron median & interquartile range	Post IV iron median & interquartile range	p value
hsCRP (mg/L)	32	5 (1 to 20.75)	6 (3 to 45)	0.005
MDA (nmol/ ml)	21	26 (18 to 40)	30 (18.5 to 78.5)	0.003
MPO (U/dl)	21	2 (2 to 5)	5 (3 to 10)	< 0.05

Conclusion

We observed an increased oxidative stress as evidenced by rise in hsCRP, MDA and MPO following intravenous iron in CKD stage 4 and 5. The clinical relevance of these findings and their effects need further study.

References

- 1) Bayés B, Pastor MC, Bonal J, Foraster A, Romero R, Oxidative stress, inflammation and cardiovascular mortality in haemodialysis--role of seniority and intravenous ferrotherapy: analysis at 4 years of follow-up; Nephrol Dial Transplant. 2006 Apr;21(4):984-90
- 2) Căpuşă C, Mircescu G, Oxidative stress, renal anemia, and its therapies: is there a link? J Ren Nutr. 2010 Sep;20(5 Suppl):S71-,doi:10.1053/j.jrn.2010.06.005
- 3) Galaris D, Pantopoulos K, Oxidative stress and iron homeostasis: mechanistic and health aspects; Crit Rev Clin Lab Sci. 2008;45(1):1-23. doi: 0.1080/10408360701713104
- 4) Tovbin D, Mazor D, Vorobiov M, Chaimovitz C, Meyerstein N, Induction of protein oxidation by intravenous iron in hemodialysis patients: role of inflammation; Am J Kidney Dis. 2002 Nov;40(5):1005-12

