

Renal risk: A population study of New Zealand diabetics

Shradha Bhagani¹, Dr Colin Hutchison²

1. University of Dundee, Nethergate, Dundee, DD1 4HN. 2. Hawke's Bay district hospital, Corner Omahu Road and McLeod Street, Private Bag 9014, Hastings 4156

INTRODUCTION

- Diabetic nephropathy is now the most common cause of end stage renal disease (ESRD) in New Zealand.
- The diabetic population is over-represented by the Māori people, compromising of 50% of diabetics in New Zealand¹.
- Māori people are known to develop diabetes at a younger age, increasing their lifetime exposure to hyperglycaemia, and overall progression of the disease.
- Inequalities in health between the Māori and non- Māori population have been known for a long time, with a life expectancy of 8-9 years lower than non-Māori²⁻⁴.
- The pressure on nephrologists is to identify risk factors to predict those at risk of progression to ESRD is increasing.
- The KDIGO CKD guidelines⁵ were therefore used to assess renal risk in accordance to the table shown below:

Table 1: KDIGO guidelines CKD risk categories

<u>Aim:</u>

Assess the "Renal Risk" of a diabetic population using recognised international criteria.

METHOD

Data was collected on 1829 unselected diabetic patients from primary care diabetes registers using the 'Medtech 32' database system and recorded on a Microsoft Excel spread sheet for further analysis.

Study type:

Retrospective population analysis

Data points:

Age, gender, date of birth, ethnicity, type of diabetes, diagnosis of proliferative retinopathy, treatment type, last HbA1C, latest creatinine, latest eGFR, latest ACR, loss of greater than 5 mls per year, renal referral, CKD diagnosis, ACEI/ARB use and type, last blood pressure reading, number of anti-hypertensive medication, smoking history, smoking cessation offered, BMI, CVD risk and cholesterol.

RESULTS

- 39% of patients in this study were of Māori origin; comparatively at a population level only 23.5% of Hawke's Bay are of Māori origin.
- In the last year 28.1% had lost greater than 5mls of eGFR (rapid progression), only 5% of which had been referred to a nephrologist.
- 46% were KDIGO CKD green, 29% were CKD yellow, 19% CKD amber, 10% were CKD red and 2% CKD dark red. (colours adapted from KDIGO guidelines⁵)
- Māori population:
 - 12% are in the red and 4% in the dark red (graph 1).
- European patients:
 - 9% and 1% were in the red and dark red risk respectively (graph 1).
- Treatment targets for the sample population (not shown) were achieved for:
 - BP (<140/90mmHg): **59.8**%
 - HbA1c (<53mol/mmol): 44%
 - On ACEI/ARB as per recommendation by guidelines: 77%

DISCUSSION

- Māori were more likely to be in the higher CKD risk categories compared to Europeans.
 - 66% of total study population in the dark red CKD category being Maori compared to only 20% of Europeans (not shown).
- There are currently significant differences in the rates of achieving KDIGO treatment targets between the Māori and non-Māori individuals

<u>Limitations:</u>

Although this was an unselected population of Hawke's Bay diabetics, further work is being carried out to complete the study to include the district.

Clinical implications

Individualized assessment to take into account risk factors for progression should be carried out. Optimal targets, as recommended by KDIGO guidelines i.e. HBA1c <53mol/mmol, ACEI if ACR>3mg/mmol, should be carried out in primary care. Review appointments recommended as per CKD risk category (table 1) should be carried out.

Further work

- Other parameters such as BMI, CVD risk, cholesterol, history of smoking may provide a better indication of renal risk
- Using the study population, and assessment of parameters, a risk score which predicts progression to ESRD may be beneficial to identify at risk individuals, and alert primary care practitioners to refer patients to secondary care.

Table 2: CIVE HISK category for Sample population	Table 2: CKD	risk category	for sample	population
---	--------------	---------------	------------	------------

CKD category	Number of people	Percentage
GREEN	783	43%
YELLOW	503	28%
AMBER	334	18%
RED	165	9%
DARK RED	35	2%

TABLE 3: KDIGO Treatment targets for Maoris vs. Europeans					
TREATMENT TARGETS		MAORI	EUROPEAN		
ACEI if Albuminuria	YES	80%	71%		
>3mg/mmol	NO	20%	29%		
HBA1c = 53mmol/mol	YES	39%	52 %		
	NO	61%	48%		

CONCLUSION

- The study identifies 10% and 2% of unselected New Zealand diabetic individuals are at high risk (red) and very high risk (dark red) of progressing to dialysis dependent renal failure.
- Of the population studied, patients of indigenous Māori origin were overly represented in the population as a whole and had significantly greater "Kidney Risk".
- Identification and individualised targeting of at risk patients may be necessary to reduce the risk of progression.

REFERENCES

Moore MP, Lunt H. Diabetes in New Zealand. J Am Med Assocation. 2000;50 Suppl 2:S65-71. Ellison-Loschmann L, Pearce N. Improving access to health care among New Zealand's Maori population. Am J Public Health. 2006;96(4):612-7. doi:10.2105/AJPH.2005.070680.

Pearce J, Dorling D. Increasing geographical inequalities in health in New Zealand, 1980 – 2001. Int J Epidemiol. 2006;35(February):597–603. doi:10.1093/ije/dyl013. Harris R, Tobias M, Jeff M, Waldegrave K, Karlsen S, Nazroo J. Effects of self-reported racial discrimination and deprivation on Māori health and inequalities in New Zealand: cross-sectional study. Lancet. 2005;367:2005–2009. Group KDIGO (KDIGO). Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013;3(1):4-4. doi:10.1038/kisup.2012.76.

