

Hannover Medical School

Department of Internal Medicine Division of Nephrology and Hypertension

Dual inhibition of classical protein kinase c-alpha and beta isoforms reduces epithelial-to-mesenchymal transition of mesothelial cells and prevents peritoneal damage in a mouse model of chronic peritoneal exposure to high glucose dialysate

> Le Wang¹, Michael S. Balzer¹, Hermann Haller¹, Marcus Hiss¹, Nelli Shushakova^{1,2} ¹Hannover Medical School, Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover, Germany ²Phenos GmbH, Hannover, Germany

- During peritoneal dialysis (PD) peritoneal membrane (PM) damage occurs due to inflammation and epithelial-to-mesenchymal transition (EMT) of mesothelial cells.
- Classical protein kinase C isoforms alpha and beta (PKC lpha , PKC eta) are involved in pro-inflammatory mediator release and TGF β signalling, both processes leading to fibrosis and ultrafiltration failure.
- We investigated the role of PKC α and PKC β in the effects of glucosebased peritoneal dialysis fluid (PDF) on PM using a mouse model of chronic peritoneal exposure to PDF.

- Chronic PDF exposure for 5 weeks in C57BL6 wild type mice using a customized vascular access port. Controls received saline instead of PDF.
- Dual inhibition of PKC α and PKC β with Go6976, a cell-permeable, reversible, and ATP-competitive inhibitor of classical protein kinase C added at a 1µM concentration to saline or PDF.
- Ultrafiltration capacity of PM was evaluated using a modified ultrafiltration test. Histological and immunohistological analysis of peritoneum was performed. Pro-inflammatory mediator release was measured by specific ELISAs and cytometric bead array technology.

Results

Conclusion

Dual inhibition of the classical PKC isoforms is a suitable therapeutic strategy in the prevention or amelioration of peritoneal damage during PD.

Michael S. Balzer

