Does cannulation technique impact arteriovenous fistula and graft survival? Maria Teresa Parisotto¹, Volker Schoder², Peter Kaufmann¹, Cristina Miriunis¹, Aileen Grassmann³, Laura Scatizzi³, Daniele Marcelli³ ¹NephroCareCoordination, Fresenius Medical Care, Bad Homburg, Germany; ²Clinical Research, Fresenius Medical Care, Bad Homburg, Germany; ³EMEALA Medical Board, Fresenius Medical Care, Bad Homburg, Germany ### **INTRODUCTION** - There is a close link between the availability of a well-functioning vascular access and patient survival on haemodialysis. - Every effort should be made to maintain the functionality of the vascular access for long-term use. - Practices of access cannulation vary from clinic to clinic, mainly for historical reasons. - The aim of this study was to investigate the impact of cannulation technique on the survival of the arteriovenous fistula (AVF) and grafts (AVG). #### **METHODS** - In April 2009, a cross sectional survey was conducted in 171 dialysis units located in Europe, Middle East and Africa to collect details on vascular access cannulation practices. - On the basis of this survey¹, a cohort of patients was selected for follow-up, inclusion being dependent on the availability of corresponding access survival/intervention data in the clinical database. - Access survival was analyzed using the Cox regression model (adjusted for within country effects) defining as events the need for first surgical access survival intervention. - Patients were censored for transplantation, death, loss of followup, or end of the study period (March 31, 2012). Results were adjusted for age, gender and diabetes mellitus. ## Figure 1. Kaplan Meier access survival curves according to cannulation technique, needle size, blood flow rate and venous pressure ### **RESULTS** - Out of the 10,807 patients enrolled for the original survey, access survival data was available for 7,058 (65%). These resided in Portugal, UK, Italy, Turkey, Romania, Slovenia, Poland and Spain. - Mean age was 63.5±15.0 years; 38.5% were female; 27.1% were diabetics; 90.6% had a native fistula and 9.4% had a graft. Access location was distal for 51.2% of patients. During the follow-up, 51.1% were treated with antiaggregants and 2.8% with anti-coagulants. - Prevalent needle sizes were 15 G and 16 G for 63.7% and 32.2% of the patients, respectively (14 G: 2.7%, 17 G: 1.4%). Cannulation technique was area for 65.8% and rope-ladder for 28.2%, and the direction of puncture was antegrade for 57.3%. Median blood flow was 350-400 ml/min. - Results of the Kaplan Mayer access survival are reported in Figure 1. - Results of the Cox model are reported in Table 1. ### CONCLUSIONS - The practice of "area" cannulation technique is associated with a higher hazard ratio (HR) than "button-hole" or "rope-ladder". - The retrograde direction of the arterial needle puncture together with bevel down is also associated with a high HR. - The higher HR associated with a venous pressure of 150-200 mmHg should open a discussion on currently accepted limits. ### References 1. Gauly et al, J Vasc Access 2011; 12(4): 358-64 | Parameter | Category | Reference | HR | 95% CI | | p-value | |--|--|-------------------------|------------------------------|------------------------------|---|---------| | Age | 18-50 yrs
65-76 yrs
>75 yrs | 50-60 yrs | 1.00
1.03
1.47 | 0.85
0.90
1.28 | 1.17
1.19
1.69 | <0.0001 | | Gender | Male | Female | 0.94 | 0.84 | 1.04 | 0.23 | | Diabetes | Yes | No | 1.14 | 1.02 | 1.28 | 0.03 | | Platelet Anti-Aggregation | Yes | No | 1.11 | 1.00 | 1.23 | 0.06 | | Fistula Type | Graft | Fistula | 1.74 | 1.49 | 2.03 | <0.0001 | | AV-Fistula Location | Right | Left | 1.12 | 1.01 | 1.26 | 0.045 | | Av-Fistula Location | Proximal | Distal | 1.50 | 1.34 | 1.68 | <0.0001 | | Needle Size | 14 G
16 G
17 G | 15 G | 1.23
1.22
1.48 | 0.83
1.08
1.01 | 1.81
1.38
2.16 | 0.006 | | Cannulation Technique | Buttonhole
Rope-Ladder | Area | 0.78
0.88 | 0.61
0.78 | 0.99
1.00 | 0.03 | | Bevel and Needle Direction | Antegrade + Bevel Down
Retrograde + Bevel Up
Retrograde + Bevel Down | Antegrade +
Bevel Up | 0.98
0.94
1.19 | 0.84
0.82
1.03 | 1.16
1.08
1.39 | 0.02 | | Blood Flow | <300 ml/min
350-400 ml/min
>400 ml/min | 300-350
ml/min | 1.18
0.90
0.92 | 1.02
0.79
0.75 | 1.37
1.03
1.13 | 0.02 | | Venous Pressure | <100 mmHg
150-200 mmHg
200-300 mmHg
>300 mmHg | 100-150
mmHg | 1.49
1.42
1.89
2.07 | 1.09
1.22
1.57
1.24 | 2.031.662.273.47 | <0.0001 | | Arm Compression at Time of Cannulation | Patient Assistance
Tourniquet | None | 0.80
1.05 | 0.67
0.92 | 0.96
1.20 | 0.02 | **Table 1.** Results of the Cox Model with primary outcome vascular survival, defined as time to first surgical vascular access survival intervention