EVALUATION OF A BEDSIDE MONITOR OF INTERNATIONAL NORMALISED RATIO (INR) IN HEMODIALYSIS PATIENTS ON ACENOCOUMAROL

Dimitrios Hadjiyannakos¹, Vassilis Filiopoulos¹, Georgios Loukas¹, Sotirios Pagonis², Christos Andriopoulos³, Athina Drakou³, Dimosthenis Vlassopoulos¹

¹Nephrology and ²Blood Transfusion Departments «Sismanogleio-Amalia Fleming» Hospital, Athens, Greece; ³NEFROIATRIKI Renal Unit, Athens, Greece

Background

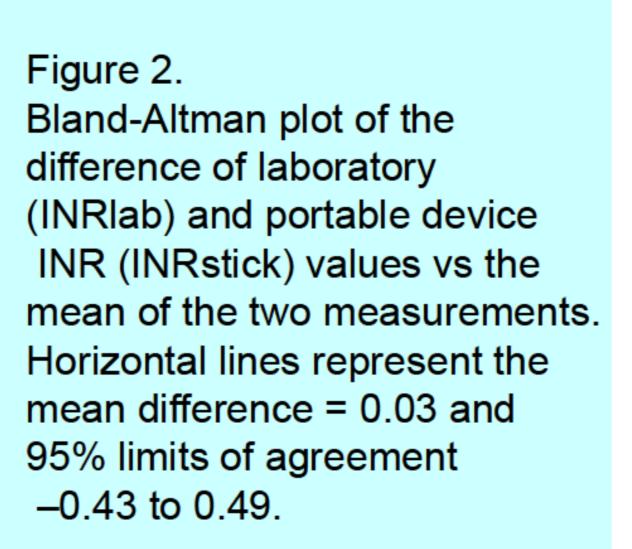
End-stage renal disease (ESRD) patients exhibit an increased risk of bleeding compared with non-chronic kidney disease patients due to several factors including heparin use during dialysis. In ESRD patients receiving vitamin K antagonists (acenocoumarol is the most widely used oral anticoagulant in Greece) the intensity of anticoagulation must be monitored frequently with prothrombin time, expressed as, INR. The use of a portable International Normalized Ratio monitor is considered a safe and effective alternative to laboratory INR testing for oral anticoagulation monitoring. There is paucity of data on a similar use of this device in the management of hemodialysis patients on chronic P.OS anticoagulation treatment.

Aim

We conducted a prospective study to determine the safety and reproducibility of portable device INR values compared to standard laboratory in hemodialysis patients receiving acenocoumarol therapy.

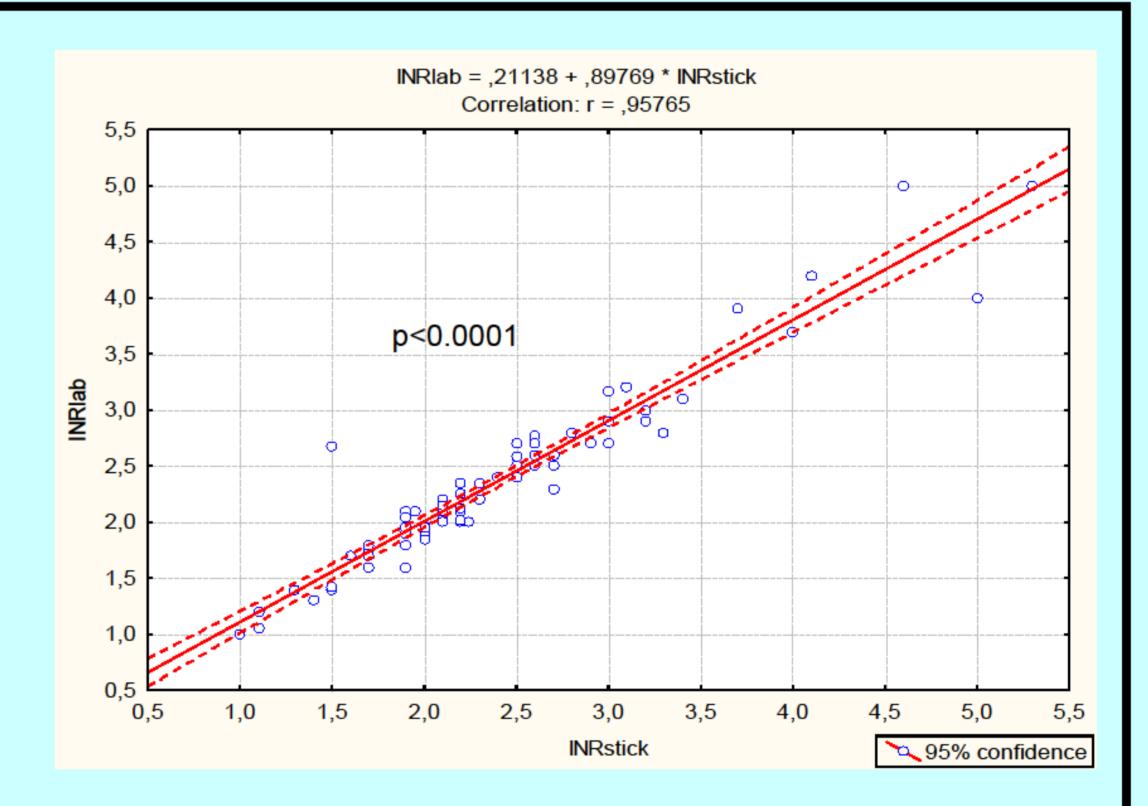
Methods

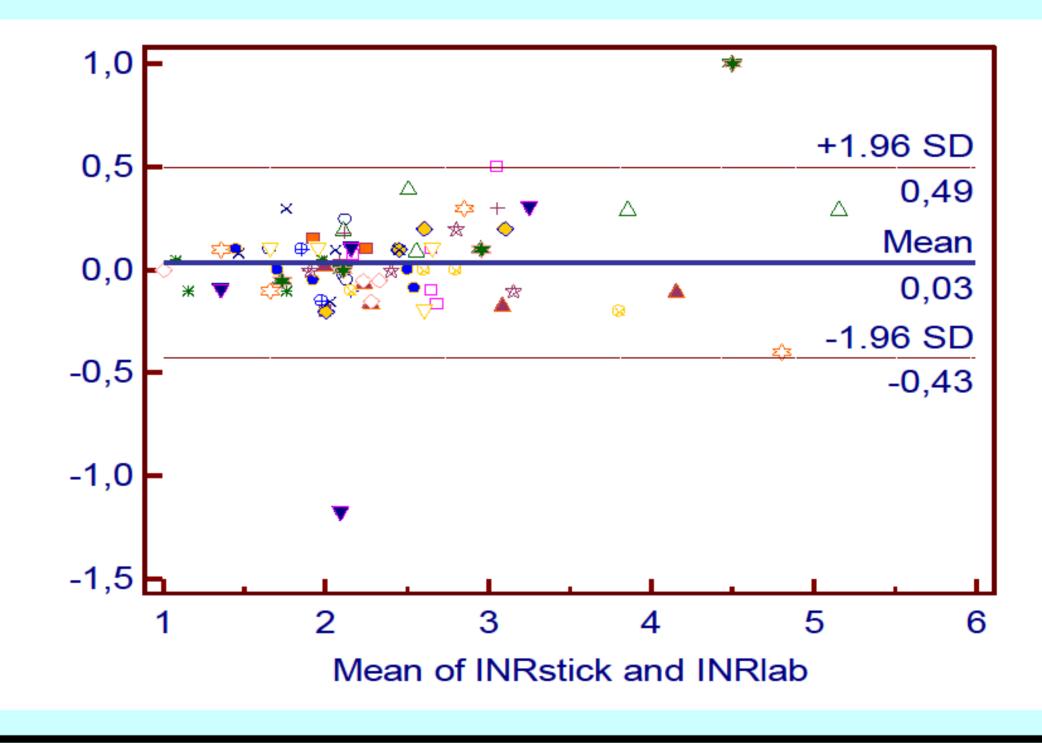
- From a pool of 87 chronic hemodialysis patients, 18 patients receiving acenocoumarol, at least 1 month before enrollment, were included in the study. Patient characteristics are summarized in Table 1.
- During a 6 month period, each patient provided at least 4 blood samples. Blood samples were drawn from the vascular access (fistula, graft or permanent venous catheter: 10, 5 and 3 patients, respectively), immediately before hemodialysis session and heparin initiation. In patients with a central venous catheter blood sampling was performed after withdrawal of 5 cc of blood from each limb. In each sample prothrombin time/INR was tested by laboratory method and by the portable device in the Dialysis Unit.
- For laboratory plasma prothrombin time/INR measurement blood samples were collected in 3.8% citrated tubes and thromboplastin reagent was used with an International Sensitivity Index (ISN) of 1.0. Portable device measurement was performed by applying a drop of blood directly to the single-use test strip of a CoaguCheck XS (Roche diagnostics).
- During the study, acenocumarol dose adjustments were based on the plasma INR results.
- Mean INR values were compared using paired t-test, with statistical significance at P<0.05. Bland-Altman plots were used to illustrate the degree of agreement or divergence between the two methods.


Table 1. Patient characteristics	
----------------------------------	--

Age (median, range) years	71 (57-87)
Sex (Men,/Women)	11/7
Hemodialysis duration (median, range) months	63 (6-372)
Primary nephropathy	
Glomerulonephritis	2
Nephrosclerosis	1
Diabetic nephropathy	3
Chronic pyelonephritis	1
Polycystic kidneys	1
Unknown	10
Vascular access	
Fistula	10
Graft	5
Central venous catheter	3
Acenocoumarol indication	
Atrial fibrilation	13
Mechanical heart valve	5
INR goal range	
2.0 - 2.5	13
3.0 – 3.5	5

Results


- The 18 study patients provided 79 blood samples and there were 158 INR measurements. Excellent correlation was obtained between portable device and laboratory INRs values (r=0.95, p<0.0001, Figure 1).
- According to Bland-Altman analysis the mean difference between portable device and laboratory INRs measurements was 0.03 with 95% limits of agreement between -0.43 και 0.49 (Figure 2).
- Measured INR values differed by 0,5 in one and ≥ 1 units in two samples (one in the case of sampling via a permanent catheter). In no instance there were conflicting INR results indicating different dose alterations in the opposite direction from the paired INR.
- In only 7 occasions a change in acenocoumarol dose was suggested either by the portable device or the laboratory but not by both.
- There were no major hemorrhagic or thromboembolic complications during the study period. A patient that presented with epistaxis was treated with a posterior nasal packing.


Figure 1.
Correlation of laboratory
(INRlab) and portal device
(INRstick) INR values.

Poster

presented at:

Conclusions

- INR controlled by a bedside prothrombin time monitor in hemodialysis patients on P.Os anticoagulation, using a blood drop from the vascular access, resulted in an excellent agreement with an in-hospital laboratory INR measurement and with very few discrepant results.
- This immediately available INR results obtained by an easily applied method has the advantage for on time therapeutic decisions in this patient population continually exposed to hemorrhagic adverse events.

References

- . Hoel RW, Albright RC, Beyer LK et al. Correlation of point-of-care INR to laboratory INR in hemodialysis patients taking warfarin. Clin J Am Soc Nephrol 4: 99-104, 2009
- 2. Sunderji R, Gin K, Shalansky K et al. Clinical impact of point-of-care vs laboratory measurement of anticoagulation. Am J Clin Pathol 123: 184-188., 2005

