

Estimation of renal function using the Cockroft-Gault, CKD-EPI and MDRD in chronic kidney disease patients not on renal replacement therapy

Andronesi A¹, Ismail G¹, Iliuta L², Gamala A¹, Balanica S¹ ¹Department of Nephrology, Fundeni Clinical Institute, UMF Carol Davila, Bucharest, ROMANIA ²Medical Informatics and Biostatistics Department, UMF Carol Davila, Bucharest, ROMANIA

Introduction

- CKD is an important health problem due to its increased morbidity and growing prevalence worldwide.
- Proper early diagnosis and stadialization is a must for a better disease management and prognosis.
- GFR is a product of the average filtration rate of each nephron, the filtering unit of the kidneys, multiplied by the number of nephrons in both kidneys.

Marker	Method of administration	Comments	
Inulin	Continuous IV infusion	Gold standard	
Iothalamate	Bolus IV or SC	Overestimation of GFR	
99mTc- DTPA	Bolus IV injection	Underestimation of GFR	
51Cr-EDTA	Bolus IV injection	10% lower clearance than inulin	
Iohexol	Bolus IV injection	Comparable to inulin; expensive and difficult to perform	

Table 1: Exogenous filtration markers for estimation of GFR

Clearance of a substance: volume of plasma cleared of a marker by excretion per unit of time.

 $C_v = U_v \times V/P_v$

Equations for GFR :

Cockroft-Gault Formula

Clcr (ml/min)=(140-Age)xWeight(kg)x0.85 (if F)/72xScr (mg/dl)

MDRD Study Equation

GFR (ml/min/1.73m²)=175xStand.Scr (mg/dl)-1.154xAge-0.203 x0.742 (if F)x1.210 (if black)

CKD-EPI Equation

GFR (ml/min/1.73m²)=141xmin(Scr/ κ ,1) α xmax(Scr/ κ ,1) α 209 x0.993 Age x1.018 (if F)x1.157 (if black),

where: κ is 0.7 (F)/0.9(M); λ is-0.329(F)/-0.411(M)

CKD-EPI Serum Cystatin C Equation

GFR $(ml/min/1.73m^2)=133xmin(Scys/0.8,1)^{-0.499}x$ max(Scys/0.8,1)-1.328 x0.996 Age x0.932 (if F)

CKD-EPI SCys and SCrc Equation

GFR (ml/min/1.73m²)=135xmin(Scr/ κ ,1) α xmax(Scr/ κ ,1)-0.601 xmin(Scys/0.8,1)-0.375x max(Scys/0.8,1)-0.711x0.995 Age x0.969 (if F)x1.08 (if black)

where: κ is 0.7 (F)/0.9(M); λ is-0.329(F)/-0.411(M)

Objectives

To assess the acuracy of different formulabased equations for renal function compared with measurement of creatinin clearance in CKD patients not on renal replacement.

Methods

- Cross-sectional study in new CKD patients.
- CKD was classified in 5 stages by measurement of creatinin clearance (CrCl) from 24-hour urine sample and compared with formula-based equations (Cockroft-Gault, MDRD and CKD-EPI).

Stage	Description	GFR	
		(ml/min/1,73 m ²)	
1	Kidney injury with normal/↑	<u>></u> 90	
	GFR		
2	Mild kidney injury with small	60-89	
	↓ of GFR		
3	Moderate ↓ of GFR	30-59	
4	Severe ↓ of GFR	15-29	
5	End stage renal disease	<15 or dialysis	

Table 2: CKD stadialization

- SPSS ver 16: kappa test with values for κ between **0.61-0.80** showing a high consistency of results.
- Accuracy, a combination between bias and precision, was used to define the best formula.

Results

Method	Mean	Standard deviation	Р	Bias	Precision (95% CI)
CrCI	39.6	16.7	-	0	-
Cockcroft- Gault	37.8	13.2	P<0.05	1.85	6.3 (0.3 ↔ 3.3)
MDRD	39	15.3	P<0.05	0.6	3.8 (-0.3↔1.5)
CKD-EPI	38.5	15.6	P<0.05	1	3.3 (0.3↔1.9)
					Table 3
Method	Mean	Standard deviation	Р	Bias	Precision (95% CI)
					(93/0 01)
CICr	40.3	19.7	1.5	0	- (93 /6 CI)
CICr Cockcroft- Gault	40.3 46.1		- P<0.05	-5.8	8.4
Cockcroft-		19.7	- P<0.05 P<0.05		

(1↔2.7)

Fig. 2: Comparison between CrCl and Cockroft-Gault

Fig. 3: Comparison between CrCl and MDRD

Fig. 4: Comparison between CrCl and CKD-EPI

Fig. 5: Bland-Altman plot- difference CrCl-CKD-EPI vs. mean between

CrCl and CKD-EPI

Table 3: Accuracy of GFR formula in elderly patients Table 4: Accuracy of GFR formula in obese patients

Results

223 patients included (106F, 117M, mean age 60.8 ± 14.2 years)

CKD-EPI had the highest accuracy (Fig.

- ✓ correct stadialization of 85% patients $(\kappa = 0.76)$
- ✓ overestimation in 9% of the cases
- ✓ underestimation in 6% of the cases.
- MDRD was very close to CKD-EPI, with a 82% accuracy (κ =0.73) (Fig. 3).
- Cockroft-Gault overestimated GFR for earlier CKD stages and underestimated GFR for more advanced CKD (Fig. 6). CKD-EPI had the highest accuracy compared to CrCl (Fig. 5,6)

Fig.6: Comparison between GFR estimation formula depending on CKD stages

In obese (*n*=61, 27.4%) and in elderly patients (>70 yrs, n=69), CKD-EPI had the highest precision (3.4 in obese, 3.3 in elderly) followed very close by MDRD (precision of 4.5 in obese and 3.8 in elderly) (Tables 3 and 4)

Conclusions

CKD-EPI and MDRD had similar results, with reasonable estimation of kidney function.

CKD-EPI had a better consistency for different CKD stages, but especially for stages 1 to 4 of CKD.

For end stage renal disease it seems that these formula based equations are not as good as clearance measurement.

References

- 1. Inker LA, Fan L, Levey AS, Assessment of Renal Function. In: Johnson RJ, Feehally J, Floege J (ed), Comprehensive Clinical Nephrology, Elsevier Saunders, Philadelphia, 2015, 30-38.
- 2. National Kidney Foundation. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. http://kdigo.org/home/guidelines/ckd-evaluation-management/
- 3. Lesley A. Stevens LA, Huang C, Andrew S. Levey AS. Measurement and Estimation of Kidney Function. In: Himmelfarb J, Sayegh MH (ed), Chronic Kidney Disease, Dialysis, and Transplantation, Elsevier Saunders, Philadelphia, 2010, 22-38.

J1) Chronic Kidney Disease. Lab methods, GFR measurement, urine proteomics

