Influence of the Secondary Hyperparathyroidism in iron requirements in dialysis patients on erythropoiesis-stimulating agent therapy. A prospective controlled study.

Sheila Cabello Pelegrín, M.D. ^{1,} Miguel G. Uriol Rivera, M.D. ¹, Manuel Luque-Ramírez, M.D., Ph.D. ², Sonia Jiménez Mendoza, M.D. ³, Juan Rey Valeriano, M.D. ¹, Antonio Corral Baez, M.D. ³

- 1 Servicio de Nefrología. Hospital Son Espases. Palma de Mallorca. Islas Baleares.
- 2 Grupo de Investigación en Diabetes, Obesidad y Reproducción Humana, Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, España.
- 3 Departamento de Nefrología. Policlínica Miramar. Palma de Mallorca. Islas Baleares.

OBJECTIVES

To evaluate the influence of the intact parathyroid hormone (iPTH) level on the iron requirements and ferrokinetic parameters in hemodialysis patients under ESA (eritropoyesis stimulating agent) therapy.

	Group A				Group B			Group	p-value	
		n = 9			n = 10			n = 12		
Age (years)	64	±	11	55	±	13	60	±	22	0.47
Tim e on dialysis (months)	26	(19-38)		38	(17-53)		34	(24-41)		0.73
BMI (kg/m²)	22	(24-29)		24	(21-33)		29	(25-32)		0.16
<u>I</u> ⁄g∕V	1.62	±	0.2	1.51	±	0.2	1.54	±	0.1	0.52
nPCR.	0.79	(0.79-0.96)		1.01	(0.76-1.26)		0.96	(0.87-1.08)		0.42
Cholesterol (mg/dl)	132	±	32	138	±	48	153	±	41	0.47
ESR mm	19	(9-29)		35	(21-55)		26	(18-39)		0.20
Albumin (g/l)	39	±	3	38	±	4	40	±	3	0.24
Triglycerides(mg/dl)	98	(79-205)		135	(99-318)		233	(193-281)		0.05
Vitamin <u>B12</u> (pg/ml)	572	±	360	636	±	253	405	±	157	0.13
Folic Acid (ng/ml)	19	±	3	18	±	15	19	±	13	0.98
Corrected calcium (mg/dl)	9.1	±	0.3	8.7	±	0.5	9.0	±	0.6	0.21
Phosphorus (mg/dl)	3.8	±	1.2	4.5	±	1.1	4.5	±	1.6	0.45
25 Vitamin D (ng/ml)	19	(15-31)		23	(11-33)		25	(14-27)		0.91
iPTH (pg/ml)log	1.97	±	0.25	2.37	±	0.07	2.64	±	0.1	<0.01
ESA dose <u>IU</u> /week	8000	4500	0(10500)	4000	4000 (3758-9750)		5000	(4000-8000)		0.55
ERI, JU/kg per week per g/dl	8.7	(4.8-17.1)		6.6	(3.3-11.2)		4.3	(3.2-10.7)		0.55
<u>Comorbidities</u>										
DM, Yes,n(%)	3	(33)		4	(40)		3	(25)		0.75
HTA: Yes.n(%)	8	(89)		9	(90)		11	(92)		0.97
DLP: Yes.n(%)	3	(33)		3	(30)		9	(75)		0.06
<u>Treatments</u>										
Venofer; Yes, д(%)	9	(100)		7	(70)		9	(75)		0.20
Iron, mg/month	100	(100-150)		100	(100-100)		100	(100-200)		0.66
Cinacalcet; Yes, n(%)	1	(11)		1	(10)		8	(67)		<0.01
Paricalcitol; Yes, n(%)	4	(44)		8	(80)		11	(91)		0.04
DM: diabetes mellitus, HT: hypertension, DLP: dyslipidemia; nPCR: normalized protein catabolic rate, TSI: transferrin										

RESULTS

s aturation index, EBI: erythropoietin resistance index. EBI, (The erythropoietin resistance index (EBI) was determined as

the weekly weight-adjusted dose of EPO (U/kg/week) divided by Hb concentration (g/dl). MediatSD, median (P25-P75),

31 patients completed the study (A: n = 9, B: n = 10 and C: n = 12). Baseline data in table 1. The hemoglobin levels and ESA doses were similar in all groups during the study. In Group A mean iron dose decreased 77 \pm 66mg/month (P < 0.01), while increased in the groups B (20 \pm 42mg/month, P = 0.16) and C (33 \pm 115mg/month, P = 0.33).

There was statistical difference between the mean change in iron dose between groups A and C (P = 0.003). Transferrin saturation index (TSI) changes observed in Group A and C were significantly different (increased in Group A (median: 2.4%) and decreased in group C (median: 3.7%).

METHODS

We conducted a prospective, clinically-controlled trial in a chronic dialysis unit from January 2010 to November 2011. Patients were stratified according to the iPTH level (Group A: iPTH 150pg/ml, Group B: 150-300pg/ml and Group C: > 300pg/ml). Follow-up period six months.

Main outcome measure To determine the difference in the iron requirements in each group from baseline to month 6 and the differences in the mean change between groups.

ESA dosage was administrated according to the following protocol: i) ESA dosages were increased by 25% for Hb decreases < 2 g/dl or Hb \geq 9 and < 11 g/dl or by 50% when Hb decreases \geq 2 g/dl or Hb < 9 g/d; ii) ESA dosages were decreased by 25% for Hb increases \geq 1 g/dl or Hb \geq 12 and \leq 14 g/dl, or by 50% for Hb increases > 2 g/dl. If Hb was > 14 g/dl, we temporarily stopped ESA for a month. Then, we restarted ESA administration with a 25% reduction of the lower dose previously administered.

Intravenous iron supplementation (100 mg of iron sucrose, Venofer®) was prescribed in order to maintain TSI levels ≥ 20% during the study as needed.

Figure 1. Variations from the beginning to the end of the study by groups according to PTHi. (A) Mean change iron dose, (B) Mean change in % of ESA, (C) Mean change in % of TSI, (D) Mean change in % of RDW. ESA: erithropoiesis stimulating agent, RDW: red cell distribution width, TSI: transferrin saturation index. * p<0.005 respect to group A

CONCLUSIONS

- · Iron supplementation decreased in patients with the lower iPTH levels, and it was associated and with an increase in TSI, inversely than those with higher levels.
- · These results suggest a possible relationship between iPTH levels and iron requirements.

References

• Cumulative iron dose and resistance to erythropoietin. A. Rosati, C. Tetta, J.I. Merello, I. Palomares, R. Perez-Garcia, F. Maduell, B. Canaud, P. Aljama Garcia. J Nephrol. DOI 10.1007/s40620-014-0127-3

• How can erythropoeitin-stimulating agent use be reduced in chronic dialysis patients?: The "forgotten adjunct therapy": the link between ESA use and control of hyperparathyroidism in chronic kidney disease. Battistella M, Chan CT, Semin Dial 2013 Sep-Oct 2013. doi:10,1111/sdi.12106

