Inter-method variability in bone alkaline phosphatase measurement: clinical impact on the management of dialysis patients <u>Pierre Delanaye</u>, Jean-Claude Souberbielle, Romy Gadisseur, Bernard Dubois, Jean-Marie Krzesinski, Etienne Cavalier University of Liège, CHU Sart-Tilman, Liège, Belgium, Laboratoire d'Explorations fonctionnelles, Hôpital Necker, Paris, France. ## **OBJECTIVES** Bone-specific alkaline phosphatase (BAP) is now recommended to assess bone turnover in hemodialysis (HD) patients. A cut-off ≥ 20µg/L is generally proposed to differentiate high bone-turnover from normal-low. However, little is known about potential variability between methods available to measure BAP. # METHODS We measured BAP in 76 HD patients with six different assays (Beckman-Coulter Ostase IRMA, IDS iSYS Ostase, IDS Ostase enzyme immunoassay, DiaSorin Liaison Ostase and Quidel MicroVue BAP). Summary of the methods used in the study. | Method | Measures | Has been calibrated against | Origin of the antibodies | Origin of the antigen | CV | |-------------------------------|---|---|---|-----------------------|--------| | Beckman-Coulter Ostase IRMA | Mass of the enzyme, Provides results in µg/L. | Hybritech Tandem-R Ostase | Beckman-Coulter | Beckman-Coulter | <13.6% | | Beckman-Coulter Ostase Access | Activity of the enzyme, Provides
results in mass (µg/L) after
calibration | Hybritech Tandem-R Ostase | Beckman-Coulter | Beckman-Coulter | <6.5% | | IDS iSYS Ostase | Activity of the enzyme. Provides results in mass (µg/L) after calibration | Beckman-Coulter Ostase Access | Beckman-Coulter | Beckman-Coulter | <9% | | IDS Ostase BAP EIA | Activity of the enzyme. Provides results in mass (µg/L) after calibration | Beckman-Coulter Ostase Access | Beckman-Coulter | Beckman-Coulter | < 6.4% | | DiaSorin Liaison Ostase | Mass of the enzyme (µg/L) | Beckman-Coulter Ostase Access | Beckman-Coulter Ostase Access for the capture antibody, DiaSorin for the second, isoluminol bound, antibody | DiaSorin | <8.1% | | Quidel MicroVue | Activity of the enzyme (U/L)* | 1 unit of BAP is defined as 1 µmol
of p-nitrophenylphosphate
hydrolyzed per minute at 25 °C | Quidel (Metra) | Quidel (Metra) | <7.6% | ^{*} U/L values were divided by 0.488 to yield µg/L. Fig. 1. Distribution of BAP levels observed in 76 hemodialyzed patients according to the different methods used in the study. The solid reference lines at 10 and 20 μg/L represent the different cut-offs proposed to define low and high bone-turnover in hemodialyzed patients, obtained with the former Hybritech Tandem Ostase assay. Concordance of the different methods to classify identically the patients when they present BAP values \leq 10, between 10 and 20 and \geq 20 µg/L with the Beckman-Coulter Access Ostase assay. | Assay | Concordance
with Access:
BAP ≤ 10 µg/L | with Access: BAP
comprised between
10 and 20 µg/L | Concordance
with Access:
BAP ≥ 20 µg/L | |--------------------------------|--|---|--| | Beckman-Coulter IRMA
Ostase | 100% | 79.5% | 79.2% | | IDS ISYS Ogase | 70% | 66.7%% | 100% | | IDS Ostase BAP EIA | 50% | 61.5% | 100% | | DiaSorin Liaison Ostase | 90% | 80.5% | 88.9% | | Quidel MicroVue | 10% | 38.4% | 100% | Equivalent concentrations obtained with each BAP assay, when the value measured with the Beckman-Coulter Access is 10 or 20 $\mu g/L$. | Assay | BALP (µg/L) | BALP (µg/L) | Mean bias (%) | | |-------------------------------|-------------|-------------|---------------|--| | Beckman-Coulter Access Ostase | 10 | 20 | 0 | | | Beckman-Coulter IRMA Ostase | 9.6 | 16.9 | -9.8 | | | IDS iSYS Ostase | 13.2 | 24.7 | 27.8 | | | IDS Ostase EIA | 13.2 | 242 | 26.5 | | | DiaSorin Liaison Ostase | 7.7 | 17.4 | -18 | | | Quidel MicroVue | 14.4 | 27.9 | 41.8 | | These values were calculated according to the equations presented in Table 2. The mean bias value, expressed in %, is, for a given method, the mean bias observed when the "X" of the Deming equation is replaced by 10 and 20 µg/L. # RESULTS We observed a high correlation between all the assays ranging from 0.9948 (IDS iSYS vs. IDS EIA) to 0.9215 (DiaSorin Liaison vs. Quidel Microvue). However, using the regression equations, the equivalent concentration of a Beckman-Coulter Access value of 10 μ g/L can range to $7.7-14.4~\mu$ g/L and of 20 μ g/L can range to $16.9-27.9~\mu$ g/L with other assays. According to Beckman-Coulter Access, 13%, 50% and 37% of the patients presented BAP values ≤10, between 10 and 20 and ≥20 µg/L, respectively. Discrepancies are observed when other assays are used (concordance from 10 to 100%). ### CONCLUSIONS Analytical problems leading to inter-method variation should be overcome to improve the usefulness of this marker in clinical practice. According to correlation results, recalibration of BAP assays is necessary but should not be a major issue. Nephrologists should be aware that, just like PTH, b-AP results are not transposable from one laboratory to the other. More then ever, dialogue between laboratories and nephrologists remain essential. 582-SP