SERUM ASYMMETRIC DIMETHYLARGININE IS RELATED TO HEMODIALYSIS MORTALITY IN NON DIABETIC INDIVIDUALS

Mauro S M Marrocos¹, Andrei A. Teixeira¹, Beata M R Quinto¹, Silmara de M Carmona¹, Mariana N Kuniyoshi¹, Patrícia T Monteagudo², Sylvia Manfredi¹, Maria E Canziani¹, Marcelo C Batista^{1,3,4}

> ¹Federal University of São Paulo, Nephrology - São Paulo - Brazil, ²Federal University of São Paulo, Endocrinology - São Paulo – Brazil, ³Albert Einstein Jewish Hospital, Nephrology – São Paulo – Brazil, ⁴ New England Medical Center, Tufts University, Nephrology – Boston, MA

OBJECTIVES

ADMA, the principal endogenous nitric oxide synthase inhibitor, is substantially increased in plasma of patients on Hemodialysis (HD), and may either works as a biomarker of HD mortality or be causally related. We aimed to evaluate the association of ADMA levels with HD mortality in an observational

Predialysis ADMA levels have been measured by HPLC in 202 individuals prevalents on HD. Their association with all-cause mortality over a 4 years period was analyzed using a Cox model adjusted for potential confounders (demographics, clinical characteristics, comorbidities, albumin, PTH, CRP).

Survival

METHODS

RESULTS

TABLE 1 depicts demographic, clinical and laboratory characteristics of the whole group. Diabetics were older $(57, 1 \pm 13, 3 \lor 50, 2 \pm 15, 1 \lor 20, 002)$ Student test), heavier (BMI: $25,9 \pm 2,9 vs$ $24,9 \pm 2,4$, P = 0,017 Student t test), and had a greater prevalence of coronary disease (36,9% vs 15,0%, P = 0,001 Chi square). Median (interquartile range) for ADMA was 1.71 μ M (0,60, 1.37) in diabetics vs 0.88 μ M (0.23, 2,25) in non diabetics (P = 0.059 Mann Whitney). Death ocurred in 41 (20,3%) and 40 (19,8%) received a graft. TABLE 2 depicts demographic, clinical and laboratory patients characteristics according to evolution. In fully adjusted models, ADMA was associated with mortality in non diabetics, but not in diabetics (P = 0,000, HR: 2,294, 95% CI: 1,63 3,22). (GRAPHIC 1) The area under the ROC curve provided by ADMA in non diabetics was 0.858 (P = 0.000, 95% CI: 0.790 - 0.926). (GRAPHIC 2). There was no correlation between ADMA and CRP.

TABLE 1: Demographic, clinical and laboratory characteristics of patients.

	Total (N = 202)
Age (years)	52,5 ± 14,9
Male	118 (58,4%)
Dialysis vintage (months)	37,2 ± 26,9
Caucasian	138 (68,3%)
BMI (kg/cm²)	25,2 ± 2,6
Waist circumference (cm)	97,8 ± 11,0
Diabetes mellitus	136 (67,3%)
Hypertension	179 (88,6%)
Cardiovascular Disease	86 (42,6%)
 Cerebrovascular disease 	21 (10,4%)
 Coronary disease 	44 (21,8%)
 Peripheral vascular disease 	46 (22,8%)
 Congestive heart failure 	31 (15,3%)
Renin angiotensin system	140 (69,3%)
Statin use	108 (53,5%)
Acetylsalicylic Acid use	73 (36,1%)
HDL-C (mg/dL)	38,2 ± 14,4
LDL-C (mg/dL)	73,0 ± 28,7
Trialycaridas (ma/dl)	169 / + 116 1

TABLE 2: Demographic, clinical and laboratory characteristics of patients according to evolution. (*Student t test, **Mann Whitney U test, ***Chi Square)

	Alived (N = 121)	Death (N = 41)	P
lge (years)	53,4 ± 15,4	56,8 ± 13,4	0,214*
lale	71 (58,7%)	23 (56,1%)	0,772***
Dialysis vintage (months)	55,6 ± 22,7	41,8 ± 31,8	0,190*
aucasian	79 (65,3%)	33 (80,5%)	0,187***
BMI (kg/cm²)	25,3 ± 2,6	25,8 ± 2,8	0,270*
Vaist circumference (cm)	98,2 ± 11,1	98,5 ± 9,8	0,873*
Diabetes mellitus	40 (33,1%)	12 (29,3%)	0,653***
lypertension	107 (88,4%)	38 (92,7%)	0,443***
Cardiovascular Disease	53 (44,2%)	20 (51,3%)	0,439***
Cerebrovascular disease	11 (11,2%)	07 (12,0%)	0,133***
Coronary disease	24 (20,0%)	12 (30,8%)	0,163***
Peripheral vascular disease	28(23,3%)	09 (23,1%)	0,974***
Congestive heart failure	23 (19,2%)	05 (12,8%)	0,366***
Renin angiotensin system nhibitors use	87 (72,5%)	29 (70,7 %)	0,828***
Statin use	61 (50,8%)	25 (61,0%)	0,261***
Acetylsalicylic Acid use	42 (34,7%)	15 (36,6%)	0,828***
IDL-C (mg/dL)	38,7 ± 15,6	37,7 ± 13,4	0,693*
.DL-C (mg/dL)	74,3 ± 30,9	75,4 ± 26,9	0,841*
riglycerides (mg/dL)	168,4 ± 125,5	156,8 ± 75,1	0,579*

 $3,8 \pm 0,3$

 $410,0 \pm 349,3$

0,88 (0,60, 1,37)

0,38 (0,15, 1,18)

 $3,8 \pm 0,3$

403,9 ± 373,1

1,71 (1,34, 2,17)

0,77 (0,23, 2,25)

0,741*

0,924*

0,000**

0,034**

GRAPHIC 1: Cox regression curves for survival according to diabetic status

GRAPHIC 2: ROC curve for ADMA and mortality in non diabetics.

mgrycendes (mg/dL)	103,4 ± 110,1	
Albumin (mg/dL)	$3,8 \pm 0,3$	Albumin (mg/dL)
PTH (pg/ml)	413,0 ± 355,0	PTH (pg/ml)
ADMA (µM) – median (IQR)	1,28 (0,89, 1,91)	ADMA (µM) – median (IQR)
CRP (mg/dL) _ median (IQF	R) 0,39 (0,15 1,18)	CRP (mg/dL) _ median (IQR)

CONCLUSIONS

References

ADMA may be use as a biomarker of mortality risk into HD non diabetic patients, but with low specificity. Previous works had not cited differences between diabetics and non diabetics, neither had made analysis about sensibility and specificity.^{1,2} In one of these works the diabetics prevalence was 15%.¹ It is possible that other risk factors for mortality in HD overlap ADMA among diabetics. Or that the diabetic cohort was small.

- 1. Inflammation and Asymmetric Dimethylarginine for predicting Death and Cardiovascular Events in ESRD patients Clin J Am Soc Nephrol 2011, 6:1714-21.
- 2. Serum Asymmetric (ADMA) and Symmetric (SDMA) Dimethylarginine and Morbidity and Mortality in Hemodialysis Patients: The Retained Organic Solutes and Clinical Outcomes (ROSCO) Study(Abstract). J Am Soc Nephrol 26, 2015:69A.

