Urinary KIM-1 but not urinary NGAL is increased after short maximal exercise.

Wojciech Wołyniec², Wojciech Ratkowski¹, Robert Urbański¹, Marcin Renke² Maria Bartoszewicz³, Danuta Siluk⁴, Zuzanna Wołyniec⁵, Katarzyna Zorena³, Marcin Renke²

¹Department of Athletics, Academy of Physical Education and Sport, Gdansk, Poland
²Department of Occupational, Metabolic and Internal Diseases,
³Department of Immunobiology, ⁴Department od Pharmacodynamics,
⁵Department of Nephrology, Transplantoloy and Internal Diseases,
^{2,3,4,5}Medical University of Gdansk, Poland

INTRODUCTION

Urinary NGAL (uNGAL) and urinary KIM-1 (uKIM-1) are markers of acute kidney injury.

The albuminuria is a well–known abnormality after an intensive physical exercise.

The aim of this study was to investigate changes in uNGAL and uKIM-1 after intensive exercise causing albuminuria.

Bruce protocol

Stage	Minutes (min)	Speed (km/h)	Grade (%)
0	0-3	0	0
1	3-6	2.7	10
2	6-9	4.0	12
3	9-12	5.5	14
4	12-15	6.8	16
5	15-18	8.0	18
6	28-21	8.8	20
7	21-24	9.6	22

RESULTS

The mean VO2max was 54.29 in females and 60.83ml/min/kg in males.

For amateurs in this age there are excellent results, showing that exercise was really very intensive.

ALB, ACR, uKIM-1 were significantly higher after exercise.

KCR was increased without statistical significance.

All results are shown in a table.

Albuminuria and markers of acute kidney injury

	Alb (mg/L)	ACR (mg/g)	KIM-1 (pg/mL)	KCR (ng/g)	NGAL (ng/mL)	NCR (mikrog/g)
Pre-GTX	4.28	8.82	849.02	1239.12	6.375	14.35
Post-GTX	103.37	114.35	1243.26	1725.9	6.310	13.38
р	<0.01	<0.01	<0.01	P=0.07	ns	Ns

CONCLUSIONS

uKIM-1 is a very sensitive marker of kidney dysfunction.
In our study uKIM-1 was significantly increased after a very short exercise.
Albuminuria was also significantly increased, which is a normal finding after exercise and was expected in this study.

There was no correlation between ALB and uKIM-1.

Probably albuminuria was not causing uKIM-1 increase.

There was no change in uNGAL after short intensive exercise.

METHODS

18 participants (9 males and 9 females, mean age $37,08 \pm 7.66$) took part in the study. All were fit amateur runners; the mean BMI and WHR were 22.7 and 0.82 in females; 23.07 and 0.79 in males, respectively.

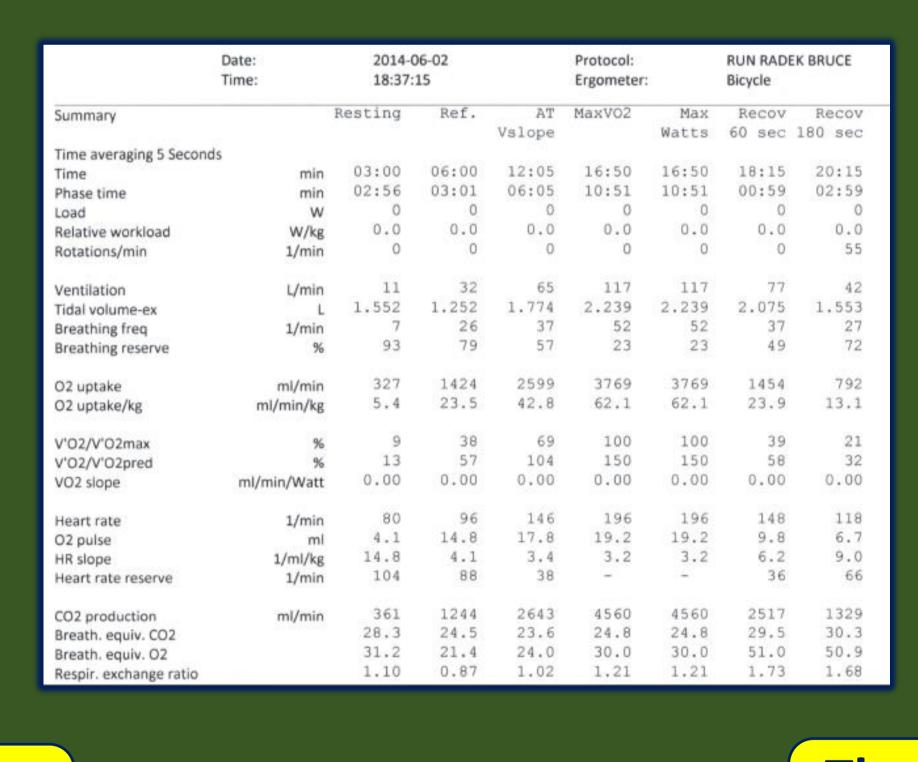
Subjects underwent a two graded treadmill exercise tests (GXT) according to Bruce protocol (table).

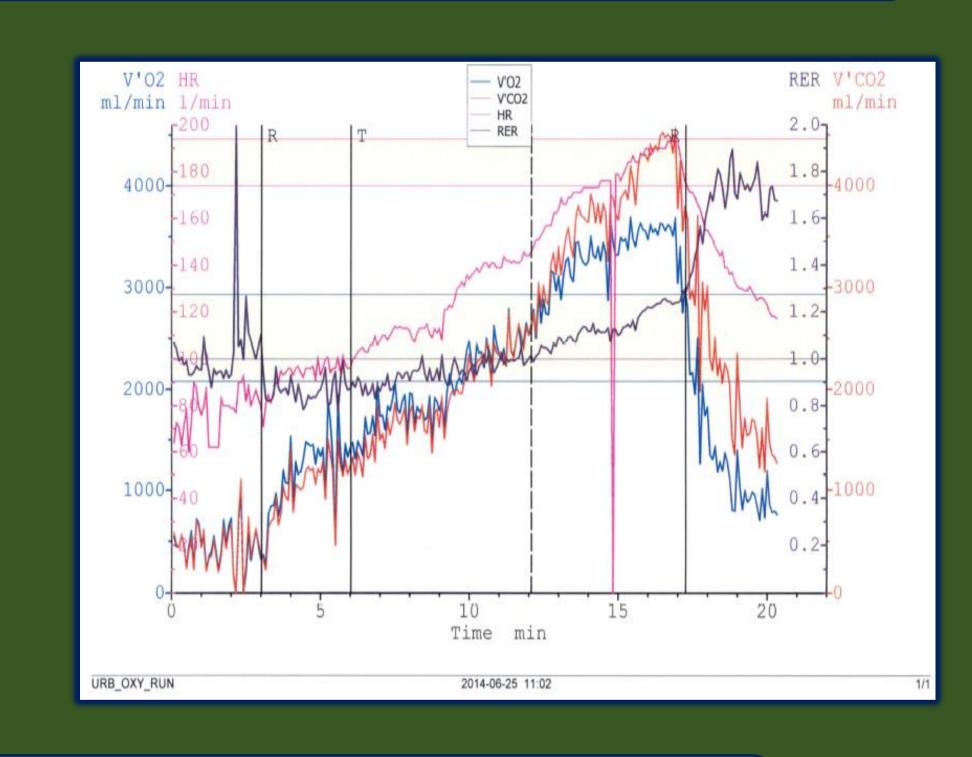
Maximal oxygen consumption (VO2max)

was measured.

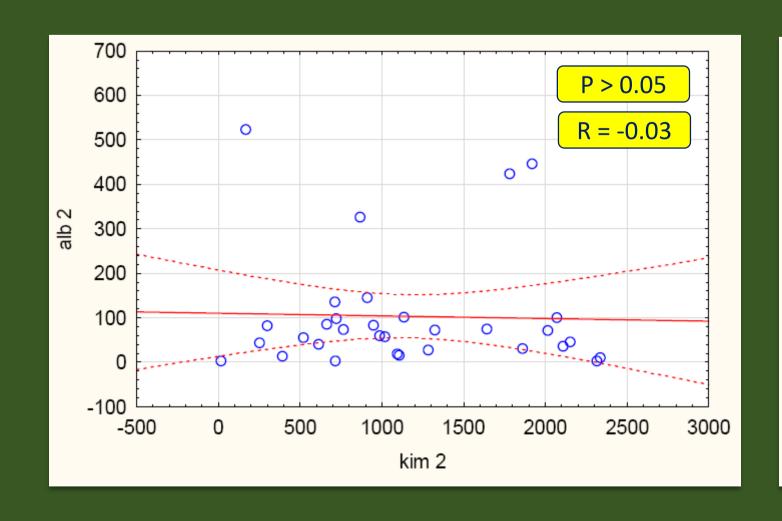
Immediately before and after test urine was collected.

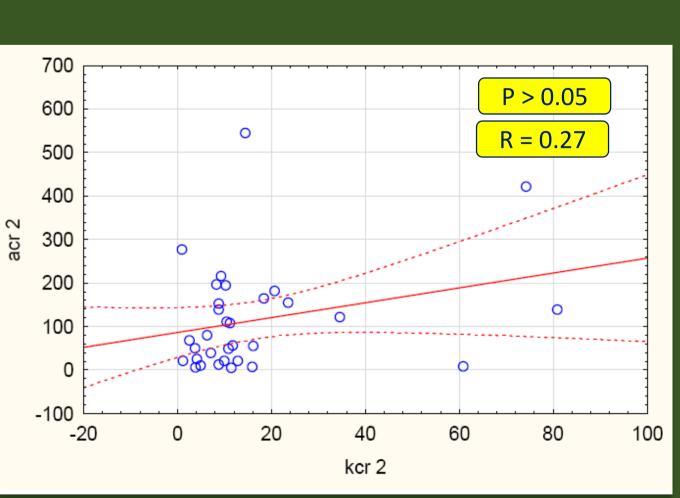
Creatinine (CREA), albumin (ALB), uNGAL, and u KIM-1 were mesured.


ALB to CREA (ACR); KIM-1 to CREA (KCR) and NGAL to CREA (NCR) ratios were calculated. Wilcoxon matched pairs test was used in statistical data analysis. This protocol was approved by an Institutional Ethics Committee.


Body composition analysis

I.D. RUN_04			AGE 36	HEIGH 170cm			DATE / 1 2014. 06		:38:05(1638)				
Body Com	posi	tion Ana	lysis				-			Viscer	al Fat Area		
Comparine	STATE OF THE PARTY	Values	Total Body Water	Soft Lean	Mass F	Fat Free Ma	ass	Weight	Normal Range				
I C W Intracellular Water	(2)	24. 5	20.0						22. 1 ~ 27. 1	VFA(cm²)			
E C W Extracellular Water	(4)	14. 3	38. 8	50. ()	52. 9			13.6 ~ 16.6				
Protein	(kg)	10.6						60. 7	9.5 ~ 11.7	150-			
Mineral	(kg)	3. 54	osseous: 2.	85					3. 30 ~ 4. 04	100			
Body Fat Mass	(kg)	7.8							7.6 ~ 15.3	50-	* 24	. 0	
Muscle - F	at A	nalvsis					▶ Mineral	is estimate	d.	0-	20 40	60 80	year
		Under	Normal			Over	l, IIII	UNIT:	Normal Range	Nutriti	onal Evalua	tion	
Weight	(kg)	55 70	85 100 1 60. 7	15 130	145	160 1	75 190	205	54. 1 ~ 73. 1		V Normal	Deficient	
S M M Skeletal Muscle Mass	(kg)	70 80	90 100 1	10 120 O	130	140 1	50 160	170	27. 1 ~ 33. 1	Fat	Normal Normal	Deficient	E
Body Fat Mass	(kg)	40 60		60 220	280	340 4	00 460	520	7.6 ~ 15.3	-	t Manageme	nt Under	


Obesity Diag	gno	sis										20		SMM	Normal Strong	Under		
		Und	ler	1	lormal				Ov	er			Normal Range	Fat	Normal	Under	Over	
B M I Body Mass Index (kg/m	12)	10	15	18.5	²² 21.	025	30	35	40	45	50	55	18. 5 ~ 25. 0	Obesity	Diagnosis			
PBF (%	6)	0	5	10	15 12. 9	20	25	30	35	40	45	50	10.0 ~ 20.0	BMI	Normal	Under Extremely	Over	
Percent Body Fat	-	0, 70	0. 75	0, 80	0.85	0.90	0.95	1.00	1.05	1.10	1, 15	1, 20		PBF	Normal	0bese	Extremely Obese	
W H R Waist-Hip Ratio		0.70	0.70	0.78		0, 90	0.90	1.00	1.00	1.10	1, 10	1.20	0. 80 ~ 0. 90	WHR	Normal	Obese	Extremely Obese	
Lean Balanc	ce_	2017/1000	SAVIA.	HOUSE HOUSE	an 🔣	Lea	n/Ideal	Leanx10	0 (%) 🕮	_	t Mass =			Body B	alance			
		Und	ler		lormal			Over	UNIT	-	-	al Edema	Edema	Upper	V Balanced	Slightly Unbalanced	Extremely Unbalanced	
Right Arm (kg	0)	55	70	85	2.78	115	130	145	160	200		ECW/TBW	ECF/TBF ECW/TBW	Lower	Balanced	Slightly Unbalanced	Extremely Unbalanced	
Night Allin 17			CANADA MANAGAN	(58%)	- 00 4					0	. 322	0. 368		Upper-Lowe	Balanced	Slightly Unbalanced		
//-		55	55	70	85	2.74	115	130	145	160		4		0.41	Body S	trength		
Left Arm (k					01.0					0	. 322	0. 368	0.38 0.43	Upper	Normal Develope	ed Weak		
Trunk (kg)			70	80	90	100	110	120	130	140				0.35	Lower	Normal Develop	ed Weak	
	g)	22. 9 99. 4		0	. 322	0. 368	0.33 0.36 Muscle Normal Muscular W											


Results of treadmill exercise tests

There was no correlation between uKIM-1 and albuminuria

Authors

First three authors completed several marathons and ultramarathons.

W. Ratkowski won a Polish Championship in Marathon in 1984.

Foto: Two authors - W.R. and W.W. during 78-km mountain marathon in Bieszczady Mountains.

