In-vivo measured β-2 Microglobulin Clearance in High-Flux HD & HDF

Beat von Albertini, Claudine Mathieu, Anne Cherpillod, Anja Bösch, Ali Kaynar, Jacky Berger, Denis Romo* Clinique Cecil & *Unilabs, Lausanne, Switzerland

- Highly permeable dialyzers with decreased hollow-fiber diameter are now available for use in HF-HD and HFD, both RRTs with enhanced convective removal of large solutes with putative uremic toxicity,
- Under volumetric control of countercurrent dialysate in HF-HD, fluxes in opposite directions occur in response to self-adjusting TMP along the flow path of the dialyzer. This "Internal-HDF", with simultaneous filtration and substitution by backfiltration, is not readily measurable, but can be deducted from clearance of large, poorly diffusible solutes,

Introduction

« Internal HDF »

- In the HEMO study of 2002, membrane flux was characterized on the basis of the clearance of the middle molecule β -2 microglobulin (β -2M, MW 11'812),
- For the high-flux arm of the study, this amounted to 33.7 11.4 ml/min with the then available dialyzers [1],
- Aim of this study was to measure patients' in-vivo β 2M clearance and extraction during routine clinical treatments of HF-HD in comparison to those of HDF, performed with the same dialyzers, as specified below.

Methods

		Hollow-Fiber					
Dialyzer studied	Manufacturer	Membrane	Surface	Wall Thickness	Inner-∅	UF-Coefficient	
FX CorDiax 80	Fresenius	PS Helixone plus	1.8 m ²	35 µm	185 µm	64 ml/h*mmHg	
Revaclear MAX	Gambro	Polyarylethersulfone	1.8 m ²	35 µm	190 µm	60 ml/h*mmHg	

(Source: FMC St. Wendel)

(Source: Gambro Hechingen)

- •Twelve consenting patients participated in the study:
- Age (yrs.) Sex ESRD Vintage (yrs.) Serum β-2M (mg/l) (id. HEMO) 70 12 3 F 8.1 9.3 27.6 4.5 33.5 9.1
- •They underwent routine clinical treatments with HF-HD and HDF, the latter performed in the online postdilution auto-substitution mode (Fresenius 5008).
- From measurements for β -2 M (with Abbot-Architect immunoassay) of serum and dialysate samples, obtained at various flow rates during treatment, dialyzer **plasma-clearance for \beta-2M** was calculated, derived both from mass removal from blood and mass recovery in the dialysate ($K_B \& K_D$),
- β -2M-reduction rate was calculated from pre- to post-treatment changes of patients' serum concentrations, in relation to change of extracellular water volume [2]. Kt/V for β -2M was estimated from measured K & t, with V=1/3 of kinetically derived urea volume, analogous to the HEMO study [1].

Results

b) Characteristics & Quantification of studied Treatments

Means SD	High-Flux HD		HDF		Ref.: HEMO, HF Arm [1]
Dialyzer.	Revaclear Max	FX CorDiax 80	Revaclear Max	FX CorDiax 80	
Treatments (N)	6	7	3	2	
Patient's Weight (kg)	79.1 24.4	77.1 ± 7.1	64.3 ± 12.0	74.6 ± 0.6	
Treatment Time (min)	206 36	208 ± 36	202 ± 10	207 ± 16	
Av. Blood Flow Rate (ml/min)	434 ± 58	455 ± 31	407± 35	414 ± 1	
Total HDF Substitution Vol. (I)			21 1	20 3	
Urea Reduction Rate (%)	77 ± 3	78 ± 3	79 ± 3	78 ± 4	
β-2M Reduction Rate (%)	72 ± 2	76 ± 2	79 ± 3	80 ± 3	
Kt/V of β-2M	1.34 0.19	1.45 0.24	2.28 0.14	2.30 0.36	0.66 0.23

Conclusions

- HDF (with externally forced filtration) remains the most efficient RRT in terms of obtainable clearance of β-2M,
- HF-HD (with self-adjusting "Internal HDF"), performed in the study with more permeable dialyzers and at high flow rates, yielded in-vivo $K_{\beta\text{-}2M}$ of unprecedented magnitudes, effectively approximating those found with HDF,
- As compared to the HEMO study (high-flux arm), the demonstrated in-vivo $K_{\text{B-2M}}$ of HF-HD is almost threefold higher,
- Pre- to post-treatment β-2 M reduction rate was found to be >70 % for all treatments of the study,
- Estimated KT/V of β-2 M in the study more than doubled those of the HEMO study and were found to be highest in HDF.

^{2.} Bergstöm J, Wehle B: No change in corrected beta 2-microglobulin concentration after cuprophane haemodialysis. Lancet 14;1:628-9, 1987

^{1.} Cheung AK et al: Serum β-2 microglobulin levels predict mortality in dialysis patients: Results of the HEMO study. J Am Soc Nephrol 17:546-555, 2006