THE PRESENCE OF PLASMID-MEDIATED EBLS IN UROPATHOGENS ISOLATED FROM PATIENTS WITH CHRONIC PYELONEPHRITIES

O. Chub

Dep. of Internal medicine and Nephrology, Kharkiv Medical Academy for Postgraduate Education, Kharkiv, Ukraine

Objectives:

- > Resistance to β-lactams has been increasing in the treatment of urinary tract infections during last years.
- The production of plasmid-mediated extended spectrum β-lactamases (ESBLS), that hydrolyze extended spectrum β-lactams, is the major cause of resistance to these drugs.
- The aim of the study was to detect and determine genes encoding the ESBLS including bla(TEM), bla(SHV), bla(CTX-M).

Methods:

n.a.: not available

EARSS1

SENTRY²

SMART³

TEST4

Measurements:

- Forty-eight clinical strains were isolated from urine samples of hospitalisated patients.
- All isolates were identified by conventional biochemical tests and confirmed by serotyping.
- Susceptibility of isolates to 15 different antimicrobial agents was determined using agar disk diffusion method.
- ESBLS were determined by polymerase chain reaction (PCR) and characterise by direct sequences of PCR products.

Sequences of the Primers Used in The Study⁵

Global surveillance studies including ESBL-producing

bacterial isolates

Blood, cerebrospinal fluid

Intra-abdominal, urinary tract

Blood, urine, respiratory tract,

Blood, respiratory tract

wounds, sterile fluids

*ESBL-positive isolates among isolates resistant to third-generation cephalosporins.

Date (Year)

2009-2012

2009-2012

2002-2011

2004-2010

• 5'-ATG AGT ATT CAA CAT TTC CG
• 5'-CCA ATG CTT AAT CAG TGA GG

• 5'-ATG CGT TAT ATT CGC CTG TG

• 5'-AGC GTT GCC AGT GCT CGA TC

ESBLS-positive pathogens

85-100%*

35.1%

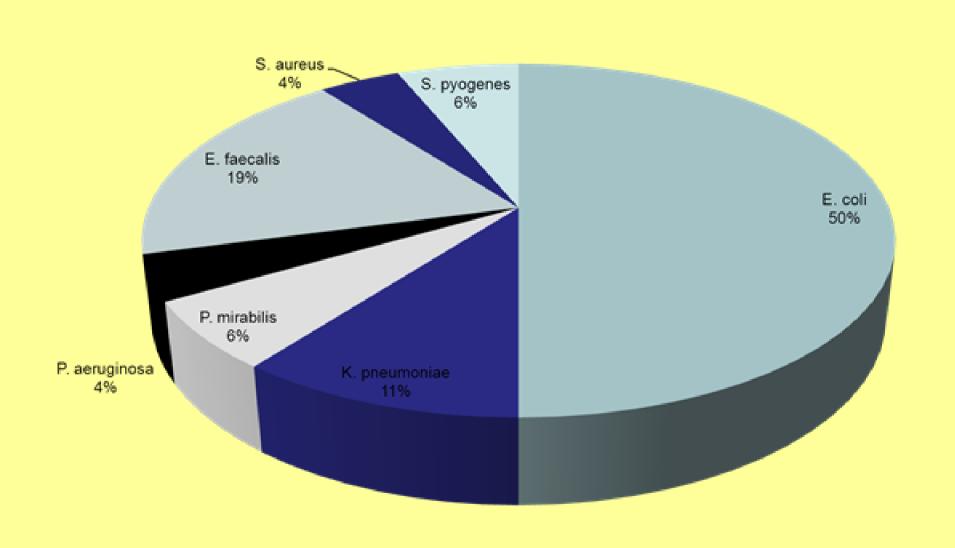
17.9%

39.3%

K.pneumoniae

E. coli

11.8%


15.3%

• 5'-SCS ATG TGC AGY ACC AGT AA

5'-ACC AGA AYV AGC GGB GC

Results:

Isolated strains

The prevalence of ESBLS among uropathogens

Bacterial isolates	ESBLS genes		
	blaTEM	blaSHV	blaCTX-M
E. coli	8.3 % (2/24)	8.3% (2/24)	12.5 % (3/24)
K. pneumoniae	-	-	40% (2/5)
P. mirabilis	33.3% (1/3)	-	33.3% (1/3)
E. faecalis	-	-	22.2% (2/9)
S. aureus	-	-	50% (1/2)

Susceptibility of the patterns

Conclusions:

- Was determined the prevalence of plasmid-mediated ESBLS in patients with chronic pyelonephritis, who were treated in one of the hospitals in Kharkiv, Ukraine.
- Overall prevalence of ESBL production among clinical isolates was 29.3 %. The prevalence of ESBL production was significantly higher with E. coli than another uropathogens. CTX-M types of ESBLS were the most common detected genes.
- > The presence of resistance genes among uropathogens indicates a high incidence between bacteria all over the world due to plasmids.

References:

- 1. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2012. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2013.
- 2. Sader HS et al. SENTRY Antimicrobial Surveillance Program, 2009-2012. Int J Antimicrob Agents. 2014 Apr;43(4):328-34.
- 3. Ian Morrissey et al. A Review of Ten Years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011. Pharmaceuticals 2013, 6, 1335-1346.
- 4. Balode A et al. Results from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) 2004-2010. Int J Antimicrob Agents. 2013 Jun;41(6): 527-35.
- 5. ARNFINN SUNDSFJORD. Genetic methods for detection of antimicrobial resistance. DAHL APMIS 112: 815–37, 2004.

