DOES CHOLECALCIFEROL CORRECT SECONDARY HYPERPARATHYROIDISM IN NON-DIALYSIS CHRONIC

KIDNEY DISEASE PATIENTS?

C Căpuşă^{1,2}, S Stancu^{1,2}, L Torsin¹, C Chiriac¹, L Viașu², D Maria³, E Moța³, G Mircescu^{1,2}

- ¹ "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- ² "Dr. Carol Davila" Teaching Hospital of Nephrology, Bucharest, Romania
- ³ Nephrology Department, Emergency County Hospital, Craiova, Romania

BACKGROUND AND AIMS

Since native vitamin D supplementation was reported to improve biochemical parameters in chronic kidney disease (CKD) patients¹, even at a smaller degree than active vitamin D analogs², but the data originated from low-to-moderate quality studies and conflicting opinions still exist³, we aimed to compare the effects of medium-term cholecalciferol and paricalcitol therapy on the biochemical calcium-phosphate metabolism parameters in non-dialysis CKD patients.

METHODS AND SUBJECTS

STUDY DESIGN:

- Multicenter, open-label, active comparator controlled, 1:1 randomized (stratified by the CKD stage).
 THERAPEUTIC INTERVENTIONS:
- Oral cholecalciferol 1000 Ul/day (C)
 For six months (compliance verified by drug accountability).
- Oral paricalcitol 1 mcg/day (P)

PRIMARY STUDY PARAMETERS:

- Efficacy Median changes after 6 months vs. baseline in serum calcidiol (25OHD), parathyroid hormone (iPTH), and alkaline phosphatase (AlkP) (Δ=6Mo-Bas);
- Safety The incidence of hyperphosphatemia (>5 mg/dL) and hypercalcemia (>10.5 mg/dL) episodes.

SECONDARY STUDY PARAMETERS:

- Median values of the studied variables at the assessment moments (baseline, 2, 4 and 6 months);
- Percentages of patients with the studied variables in target, as defined by the KDIGO guidelines⁴;
- Percentages of patients with decrease in iPTH / increase in 25OHD.

STATISTICAL ANALYSIS: Data were expressed as median with 95%Cl or percentages, and compared with Mann-Whitney, Wilcoxon and Chi² tests. A p value <0.05 was considered statistical significant.

SUBJECTS: Forty-eight vitamin D naïve subjects with increased serum parathyroid hormone (iPTH) were selected from a cohort of 157 stage 3 to 5 CKD patients (Figure 1).

Figure 1. STUDY FLOW CHART

RESULTS

At baseline, demographic and general characteristics were similar, except for higher iPTH in P group:

	Cholecalciferol (n=23)	Paricalcitol (n=24)	p
Age (y)	60 (54 to 66)	61 (54 to 67)	0.80
Gender (men) (%)	48	67	0.19
Cause of CKD (%)			
Vascular nephropathies	44	46	0.87
Primary glomerulopathies	22	25	0.79
Interstitial nephropathies	22	13	0.65
Hereditary kidney disease	4	13	0.63
Secondary glomerulopathies	4	4	0.99
eGFR (mL/min/1.73m²)	30.0 (25.4 to 37.6)	24.6 (21.9 to 33.9)	0.40
iPTH (pg/mL)	81 (65 to 192)	161 (155 to 320)	0.001
25OHD (ng/mL)	12.5 (9.9 to 15.1)	14.8 (12.9 to 19.3)	0.06
Alkaline phosphatase (UI/L)	68 (66 to 92)	101 (91 to 129)	0.05
Serum calcium (mg/dL)	9.1 (8.4 to 9.6)	9.1 (8.7 to 9.3)	0.60
Serum phosphate (mg/dL)	3.5 (3.2 to 4.5)	3.5 (3.4 to 4.2)	0.50

In C-treated subjects, higher increase in serum calcidiol was seen (Fig. 2A), and more subjects reached optimal levels (>30ng/mL; Fig. 2B). Conversely, more patients from P-treated group had a decrease of iPTH (Fig. 3A) and the decline in serum iPTH was found only in this group (Fig. 3B).

However, the proportions of subjects whith 3 and 4 mineral metabolism parameters concomitantly in the reference range were not influenced by the type of vitamin D therapy (+9% vs. +8% and +13% vs. +4%, respectively, p=0.6 for both).

Similar incidence of hyperphosphatemia (16.6% vs. 13%, p=0.9) and hypercalcemia (4% vs. 0%, p>0.5) was found in P and C groups.

Figure 2. CHANGES IN SERUM CALCIDIOL AFTER 6 MONTHS OF THERAPY

Figure 3. CHANGES IN SERUM INTACT PTH AFTER 6 MONTHS OF THERAPY

CONCLUSIONS

- 1. Six months of cholecalciferol therapy partially corrected the calcidiol deficiency, but did not improve secondary hyperparathyroidism in non-dialysis CKD, at least in a rather small dosage.

 On might speculate that:
- Higher doses would be required to reveal beneficial systemic effects of native vitamin D;
- Combined native and active vitamin D therapy could be useful for non-dialysis CKD patients.
- Both these hypothesis should be tested in future studies.
- 2. Hypercalcemia and hyperphosphatemia were not a concern, at least at this rather small doses of both drugs.

REFERENCES

- 1. Chandra P et al. Cholecalciferol (vitamin D₃) therapy and vitamin D insufficiency in patients with chronic kidney disease: A randomized controlled pilot study. *Endocr Pract*, 2008;14:10-17
- 2. Kovesdy CP et al. Paricalcitol versus ergocalciferol for secondary hyperparathyroidism in CKD stages 3 and 4: A randomized controlled trial. Am J Kidney Dis, 2012;59(1):58-66
- 3. Pipili C et al. Effect of nutritional vitamin D preparations on parathyroid hormone in patients with chronic kidney disease. Int Urol Nephrol, 2012;44:167-171
- 4. *** KDIGO Clinical Practice Guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder. Kidney Int, Suppl. 2009;113:S1-130.

DOI: 10.3252/pso.eu.53era.2016

ePosters supported by F. Hoffmann- L Roche Ltd.

