POLIMORPHONUCLEARS AS A MARKER OF INFLAMMATION IN PATIENTS WITH CHRONIC KIDNEY DISEASE BARRETO-SILVA, MARIA INES¹; CARLA LEMOS³; SIMONE VARGAS²; THEREZA CHRISTINA BARJA-FIDALGO² AND BREGMAN, R³ NUTRITION INSTITUTE 1; PHARMACOLOGY 2; NEPHROLOGY 3 STATE UNIVERSITY OF RIO DE JANEIRO, BRAZIL ## INTRODUCTION - Chronic kidney disease (CKD) is associated immune activation systemic and inflammation that seems to occur early in the course of the disease. - Polymorphonuclears (PMNs) play a critical role in chronic inflammation and migration is a marker of their function. The best marker for inflammation in CKD is not defined. ## **OBJECTIVE** To evaluate PMNs as inflammatory markers in CKD patients ### **METHODS** - Patients: non dialysed CKD patients under regular treatment with interdisciplinary team, for at least 1 year, at the Hospital of the Rio de Janeiro State University, Brazil - * estimated glomerular filtration rate (eGFR): CKD-EPI equation - Polimorphonuclears-PMN evaluation: - ability to migrate: - formyl-methionyl-leucylphenylalanine (fMLP, 100 nM) - II. toward medium (random migration) - PMN basal ROS production - experimental conditions: 37 C; 5%CO₂; for 1 hour - Statistical analysis: - PMNs migration and ROS production according to CKD stages-by ANOVA and T- test. ## RESULTS PATIENTS: • n= 54 {53% men} • age: 66.3±12.2 years (32 - 87) • treatment period: 4.9± 3.2 years | Laboratorial
Parameters | Mean±standard deviation | |------------------------------|-----------------------------------| | eGFR (mL/min.) | 32 ±13 (min. 8.5-max.: 50) | | Urea (mg/dL) | 87 ±32 | | Uric acid (mg/dL) | 7.9 ±1.9 | | Glucose (mg/dL) | 121 ±82 | | Total cholesterol
(mg/dL) | 189 ±48 | | Hemoglobin (g/dL) | 12.3 ±1.4 | | Ferritin (mg/L) | 142 ±114 | | Albumin (g/dL) | 4.5 ±0.1 | | Ca (mg/dL) | 9.5 ±0.4 | | PO4 (mg/dL) | 3.8 ±0.7 | | | | #### IL8 LEVELS ACCORDING TO CKD STAGES ## CONCLUSIONS Data suggest that eGFR is associated with the desensitization of circulating PMNs to fMLP, which may contribute to CKD- associated inflammation. Interleukin was not able to identify these alterations.