Can long time/high dose hemodialysis, LTD decrease in serum interleukin-6, IL-6, tumor necrotic factor-α, TNF-α and fibroblast growth factor-23, FGF-23?

Hiroshi Tanaka¹, Tomoyuki Kita², Kumi Okamoto², Maki Mikami² and Rumi Sakai¹, Ashiya Sakairumi Clinic ¹, Ashiya and Sakairumi Clinic², Kobe, Japan

INTRODUCTION AND AIMS

Many studies reported that long time/high dose hemodialysis, LTD improves mortality, blood pressure control, anemia, quality of life, QOL of hemodialysis patients [1-4]. Although routine laboratory data of LTD patients were monitored, any other specific data were not enough reported. High concentrations of the phosphate-regulating hormone-like substance, fibroblast growth factor 23, FGF-23 has been recently recognized as an independent risk factor for disease progression, cardiovascular disease, and death for chronic kidney disease, CKD and hemodialysis patients [5-7]. In this study, we measured FGF-23, cytokines such as serum IL-6 and TNF-α, including routine laboratory data in order to reveal the efficacy of LTD.

PATIENTS CHARACTERISTICS

	SD, HDP< 54	LTD, HDP≧54
	SD, HDI 134	
Patients, cases	129 (53 females, 76 males)	77 (27 females, 50 males)
Diabetic nephropathy, cases	28, 21.7%	18, 23.3%
Age, years	66.8±12.8	61.1±11.4
Dialysis Duration, years	9.4 ± 8.7	11.5±7.6
Frequency, times/week	3.0 ± 0.1	3.6 ± 0.6
Dialysis Time, hours/session	13.5±1.3	19.4±3.3
HDP	40.9±4.1	68.4 ± 14.5

SD: Standard Hemodialysis Patients, LTD: Long Time/High Dose Hemodialysis Patients $HDP = (Dialysis Time) \times (Frequency, times/week)^2$, an index of dialysis adequacy[8]

METHODS

- 1. Subjects were 206 hemodialysis patients, who accepted the consent of our study in documents.
- 2. They were well-controlled out-patients in our clinics and divided in two groups, whose hemodialysis product, HDP was higher or lower than 54 (ex. 6 hours/session and 3 times weekly).
- 3. The blood sample was obtained directly through an arteriovenous fistula before hemodialysis on the day of the longest interval between consecutive dialysis sessions.
- 4. Measurements
- > Hemoglobin was measured by an automated cell counter, Sysmex XE-2100 (Sysmex Corp., Kobe, Japan).
- > Albumin, Calcium, inorganic phosphate, i-Phosphate concentrations were measured using Automated Clinical Chemistry Analyzer JCA-BM2250 (JOEL Ltd., Akishima, Tokyo).
- \triangleright β_2 -MG was measured using latex enhanced imunoturbidimetric assay kit 'EIKEN'β2-M-II (Eiken Chemical Co. Ltd. Tokyo, Japan) and Automated Clinical Chemistry Analyzer JCA-BM9130 (JOEL Ltd., Akishima, Tokyo).
- ➤ Intact parathyroid hormone, i-PTH; Elecsys® PTH and automated immunoanalyzer Modular Analytics (Roche Diagnostics, Mannheim, Germany).
- > IL-6 & TNF-α; PeliKineTM human IL-6 ELISA kit & PeliKine CompactTM human TNF-α ELISA kit (Sanquin Blood Supply, Amsterdam, The Netherland) and FGF-23; FGF-23 ELISA Kit (KAINOS Laboratories, Inc., Tokyo, Japan). Wellwash & Multiscan FC (Thermo Fisher Scientific Inc., Waltham, MA, USA) were used for measurements.
- 5. Statistical analysis All data and results are expressed as mean \pm s.d. Statistical analysis was done using unpaired Student's test. A p value <0.05 was considered statistically significant.

RESULTS

serum concentration	SD patients	LTD patients	p
Hemoglobin, g/dl	10.8 ± 1.0	11.1 ± 1.1	0.097
Albumin, g/dl	3.9 ± 0.3	4.0 ± 0.3	0.219
Calcium, mg/dl	8.9 ± 0.6	8.9 ± 0.6	0.902
i-Phosphate, mg/dl	4.9 ± 1.3	4.4 ± 1.0	< 0.01
β_2 -MG, mg/l	27.1 ± 5.6	24.4 ± 3.3	< 0.01
i-PTH, pg/ml	149 ± 138	143 ± 156	0.76
IL-6, pg/ml	6.99 ± 6.78	4.99 ± 4.06	< 0.05
TNF-α, pg/ml	5.6 ± 34.3	3.8 ± 16.3	0.666
FGF-23, mg/dl	$1,182 \pm 905$	789 ± 771	< 0.01

DISCUSSION & CONCLUSION

- 1. Serum FGF-23 in two groups was lower than those, which were reported, because our Standard Hemodialysis, SD patients had also enough doses of hemodialysis and lower serum i-phosphate.
- 2. What's more, serum FGF-23 in Long Time/High Dose Hemodialysis, LTD patients was significantly lower than that in SD patients. As many studies were reported, LTD removed more phosphate and lower serum i-phosphate decreased FGF-23.
- 3. As serum β_2 -MG and IL-6 in LTD patients were significantly lower than those in SD patients, lower β_2 -MG might be caused by not only more removal but less production.
- 4. In conclusion, long time/high dose hemodialysis, LTD might bring better outcome to hemodialysis patients.

REFERANCES

- 1. Ercan Ok, Soner Duman, Gulay Asci, et al. Comparison of 4- and 8-h dialysis sessions in thrice-weekly in-centre haemodialysis. Nephrol Dial Transplant 2011; 26: 1287–1296
- 2. Lindsay RM, Nesrallah G, Suri R, et al. Is more frequent hemodialysis beneficial and what is the evidence? Curr Opin Nephrol Hypertens 2004;13:631-635
- 3. Culleton BF, Walsh M, Klarenbach SW, et al. Effect of frequent nocturnal hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 2007;298:1291-1299
- 4. Lindsay RM, Alhejaili F, Nesrallah G, et al. Calcium and phosphate balance with quotidian hemodialysis. Am J Kidney Dis 2003;42:S24-S29
- 5. Gutiérrez OM, Mannstadt M, Tamara Isakova T, et al. Fibroblast Growth Factor 23 and Mortality among Patients Undergoing Hemodialysis. N Engl J Med 2008;359:584-92
- 6. Kirkpantur A, Balci M, Gurbuz OA, et al. Serum fibroblast growth factor-23 (FGF-23) levels are independently associated with left ventricular mass and myocardial performance index in maintenance haemodialysis patients. Nephrol Dial Transplant (2011) 26: 1346–1354
- 7. Kendrick J, Cheung AK, Kaufman JS, et al. FGF-23 Associates with Death, Cardiovascular Events, and Initiation of Chronic Dialysis. J Am Soc Nephrol 22: 1913–1922, 2011
- 8. Scribner BH & Dimitrios G. Oreopoulos DG. The Hemodialysis Product (HDP): A better index of dialysis adequacy than Kt/V. Dial Transplant 2011; 40: 431–433

Hiroshi Tanaka