safe • clean • personal

Longterm outcomes in atherosclerotic renovascular disease: a single-centre observational study

Diana Vassallo, James Ritchie, Darren Green, Constantina Chrysochou, Philip Kalra

Vascular Research Group, Salford Royal NHS Foundation Trust, Salford, UK, M6 8HD

OBJECTIVES

- Timely identification of patients with atherosclerotic renovascular disease (ARVD) who are at risk of developing adverse events would enable aggressive medical therapy and the possibility of targeted revascularization^{1,2}.
- In this study, we identify the main determinants of long-term outcomes in ARVD in a large single centre study.

METHODS

- 872 patients with a radiological diagnosis of ARVD presenting to our renal center were recruited into this single-center prospective cohort study between February 27, 1986 and August 31, 2014.
- Data collected included baseline demographics and co-morbid conditions, annualized prescribed medications, blood pressure and laboratory data (serum creatinine [umol/L], proteinuria [g/24h]). Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration equation (CKD-EPI)³.
- Multivariate Cox regression analysis was used to explore the association between these variables and the following end-points: death, end-stage kidney disease (ESKD) or need to start renal replacement therapy (RRT), cardiovascular event (CVE) and the first of any of these events.

RESULTS

	Multivariate association between risk factors and clinical end-points								
	Death		ESKD		CVE		Any		
	Multivariate		Multivariate		Multivariate		Multivariate		
	Hazard ratio	p	Hazard ratio	p	Hazard ratio	p	Hazard ratio	p	
Age	1.38 (1.23-1.56)	< 0.0001	1.33 (1.19-1.50)	< 0.0001	1.21 (1.09-1.340	< 0.0001	1.09 (0.98-1.21)	0.12	
Patency score	0.95 (0.90-1.00)	0.05	0.95 (0.90-1.00)	0.04	0.95 (0.90-1.00)	0.04	0.94 (0.90-0.99)	0.02	
Revascularization	0.67(0.52 - 0.87)	0.003	0.68(0.53 - 0.88)	0.003	-	-	-	-	
MVD	1.29 (1.05-1.58)	0.02	1.30 (1.05-1.58)	0.01	1.42 (1.17-1.73)	< 0.0001	1.31 (1.07-1.59)	0.007	
CHF	1.37 (1.09-1.71)	0.007	1.38 (1.11-1.72)	0.004	1.44 (1.16-1.78)	0.001	1.48 (1.19-1.84)	< 0.0001	
FPE	2.02 (1.40-2.92)	< 0.0001	2.05 (1.44-2.94)	< 0.0001	1.99 (1.39-2.85)	< 0.0001	1.82 (1.27-2.61)	0.001	
Statin	0.81(0.67 - 0.98)	0.03	0.85(0.71-1.02)	0.08	_	-	_	-	
Proteinuria (g/day)	1.12 (1.05-1.18)	< 0.0001	1.12 (1.06-1.18)	< 0.0001	1.09 (1.04-1.15)	0.001	1.11 (1.06-1.16)	< 0.0001	
eGFR	0.98 (0.98-0.99)	< 0.0001	0.98 (0.98-0.99)	< 0.0001	0.99 (0.98-1.00)	< 0.0001	0.99 (0.98-0.99)	< 0.0001	
(ml/min/1.73m ²)									

		Clinical Outcome Data		
	Death	ESKD	CVE	Any
	n=641 (73.5%)	n=177 (20.3%)	n=319 (36.6%)	n=710 (81.4%)
Incidence per 100	13.9	3.8	6.9	15.6
patient years				

CONCLUSIONS

- The main determinants of adverse clinical outcomes in ARVD are prior cardiovascular disease and intra-renal parenchymal damage manifest by greater proteinuria and reduced renal function.
- More effort is required to optimize medical management of ARVD using multi-targeted vascular protection therapy to help improve cardiovascular risk and decrease overall atherosclerotic burden while mitigating intra-renal parenchymal injury
- Revascularization may have a beneficial effect on long-term outcomes in certain patients, however, more research is required to help characterize this patient sub-group further

Baseline Characteristics						
	n=872					
Median follow-up (months)	54.9 (20.2-96.2)					
M edian Age (years)	71.6 (65.3-77.0)					
M ale (%)	59.7					
RAS>70% unilateral (%)	39.7					
RAS>70% Bilateral (%)	10.4					
Median patency score	115.0 (90.0-150)					
Median MAP (mmHg)	101.8 (93.3-113.3)					
Macrovascular disease (%)	71.1					
Congestive cardiac failure (%)	20.0					
Flash pulmonary oedema (%)	6.8					
Diabetes (%)	31.3					
Renin-angiotensin blocker (%)	49.6					
Beta blocker (%)	37.0					
Calcium channel blocker (%)	55.1					
Aspirin (%)	54.2					
Statin (%)	54.8					
Median Proteinuria (g/day)	0.44 (0.15-1.01)					
Median eGFR (ml/min/1.73m ²)	34.8 (25.8-46.9)					
Revascularized (%)	17.2					

REFERENCES

- 1. Textor SC, McKusick MM. Renal artery stenosis: if and when to intervene. Curr Opin Nephrol Hypertens. 2016 Mar;25(2):144-51
- Herrmann SMS, Saad A, Textor SC. Management of atherosclerotic renovascular disease after Cardiovascular Outcomes in Renal Atherosclerotic Lesions (CORAL). Nephrol Dial Transplant. 2014;30(3):366–75.
- Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-612.

