

ENDOTHELIAL DYSFUNCTION IN EXPERIMENTAL CHRONIC KIDNEY DISEASE IS CAUSED BY FGF23

M Verkaik^{1,2}, PM ter Wee¹EC Eringa², MG Vervloet¹ On behalf of the NIGRAM consortium

¹Dept. of Nephrology and ²Dept. of Physiology, ICaR-VU, VU University Medical Centre, Amsterdam, The Netherlands

Introduction

- Cardiovascular causes account for approximately 50% of mortality in patients with chronic kidney disease (CKD).
- FGF23, a phosphate-lowering protein and elevated in CKD, is independently associated with cardiovascular mortality and endothelial dysfunction.

Hypothesis

We hypothesized that CKD impairs vascular function and that this impairment can be attributed to FGF23.

Methods

- Seven weeks old male wild type C57Bl/6J mice were subjected to partial nephrectomy (5/6Nx) or sham-surgery and were kept in the study for six weeks.
- · A second non-CKD group received either PBS or FGF23 i.p. injections for 7 consecutive days twice daily.
- A third group received FGF23 antibodies by i.p. injections, in combination with a low phosphate diet, following 5/6Nx surgery. A control group received control antibodies and a normal diet.
- Resistance arteries were isolated and subjected to a pressure myograph setup to test ex vivo vascular function.
- Myocardial perfusion before and after vasodilation was assessed by myocardial contrast echocardiography (MCE).

Results

Table 1. 5/6Nx impairs kidney function and increases plasma FGF23 levels.

	Sham	5/6Nx	p-value
Plasma urea (mmol/L)	12.7 ± 0.3	22.1 ± 1.1	<0.001
Plasma creatinine (µmol/L)	15.0 ± 1.5	28.3 ± 1.6	<0.001
Urinary creatinine (µmol/24h)	2.62 ± 0.23	3.33 ± 0.15	0.021
Creatinine clearance (µl/min)	137.1 ± 20.4	92.8 ± 6.0	0.060
Plasma Pi (mmol/L)	3.37 ± 0.19	2.93 ± 0.12	0.088
Urinary Pi (µmol/24h)	19.2 ± 2.8	115.0 ± 18.4	<0.001
Fractional excretion phosphate (FEP) (%)	2.95 ± 0.92	17.01 ± 2.87	0.003
Plasma c-term FGF23 (pg/ml)	210.2 ± 13.1	315.2 ± 27.6	0.002
Renal KLOTHO mRNA expression	1.01 ± 0.04	0.69 ± 0.06	<0.001
(fold change)			
Plasma PTH (pg/ml)	255.6 ± 51.8	555.4 ± 83.8	0.014
Plasma 1,25-dihydroxyvitamin D ₃ (pmol/L)	226.8 ± 10.2	252.6 ± 23.5	0.317

Data are mean ± SEM

Figure 1. 5/6Nx impairs endothelial but not vascular smooth muscle cell (VSMC) function, which is mimicked by increasing circulating FGF23 levels.

function. (D) Endothelial function of arterioles from sham and 5/6Nx mice incubated for one hour with recombinant FGF23 (10ng/ml).

Figure 1. (A) Endothelial function. (B+C) VSMC Sham surgery → 5/6Nx surgery PBS i.p. injections → FGF23 i.p. injections 5/6Nx and ex vivo FGF23 Data are mean \pm SEM. *: p<0.05 vs. sham or PBS. Sham and ex vivo FGF23

Figure 2. FGF23 blockade improves endothelial function in 5/6Nx mice (A), but does not change VSMC responses (B+C).

Figure 3. 5/6Nx impairs endothelial function in the myocardium, decreasing cardiac microvascular blood volume reserve.

Data are mean \pm SEM. #: p<0.05 vs. Baseline and \$: p<0.05 vs. Sham.

Conclusions

- Impaired endothelium-dependent vasodilatation in CKD mice is caused by FGF23 and can be prevented by blocking FGF23.
- This endothelial dysfunction is also present in the myocardium, suggesting that this is an early step in the pathogenesis of cardiac failure in patients with CKD.
- These data corroborate FGF23 as a main target to prevent cardiovascular disease in CKD patients.

