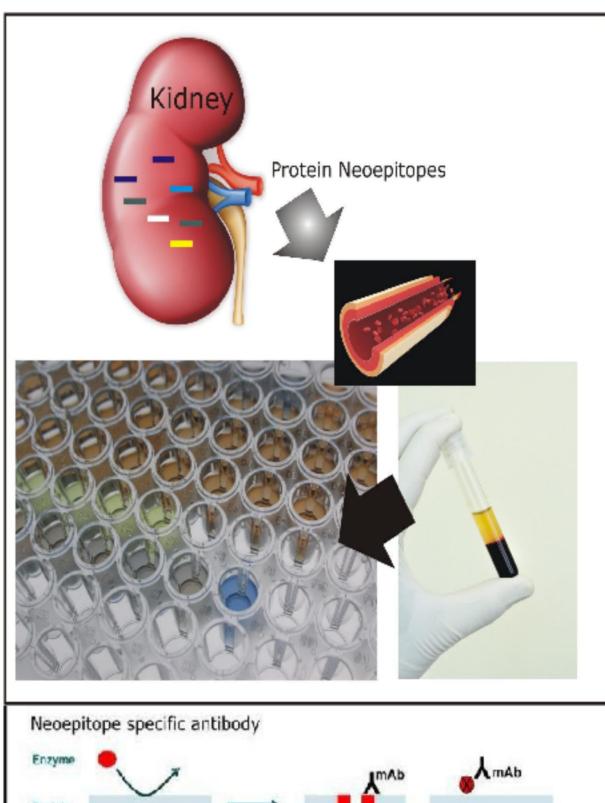
SERUM AND URINE MARKERS OF COLLAGEN DEGRADATION REFLECT RENAL FIBROSIS IN EXPERIMENTAL KIDNEY DISEASES

Marios Papasotiriou^{1,2,3}, Federica Genovese⁴, Barbara M. Klinkhammer³, Uta Kunter², Signe H. Nielsen⁴, Morten A. Karsdal⁴, Jürgen Floege², Peter Boor^{2,3}

¹University Hospital of Patras, Department of Nephrology, Patras, Greece; ²Nephrology and Immunology and ³Pathology, RWTH University of Aachen, Aachen, NRW, Germany; ⁴Nordic Bioscience, Fibrosis Biology and Biomarkers, Herley, Denmark.


Background and aim:

In this study we explore the use of specific matrix metalloproteinase (MMP)-generated collagen degradation fragments as urinary and serological markers of fibrosis in three rat models of chronic kidney disease associated with fibrosis.

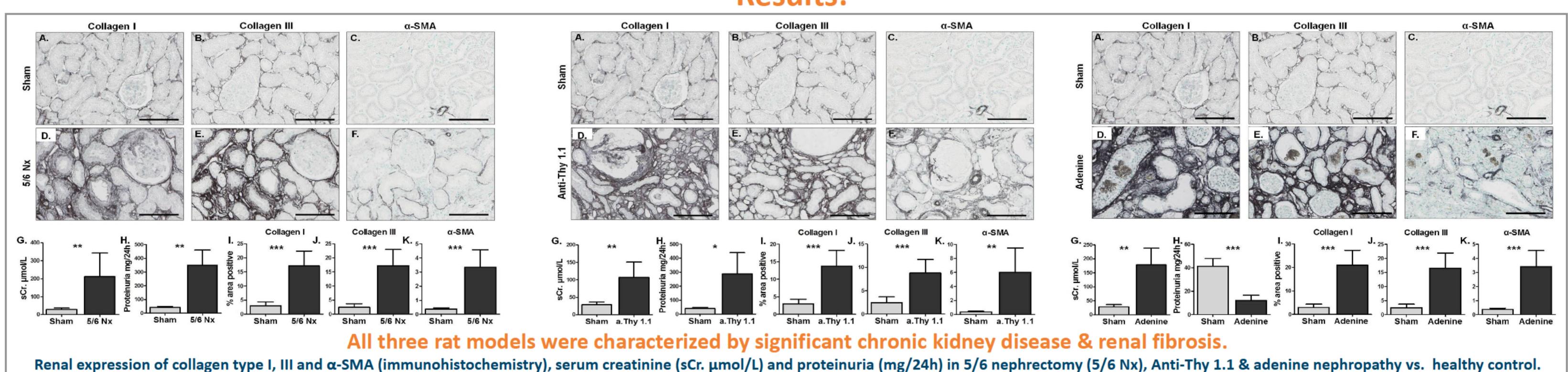
Methods:

We measured circulating and urinary, specific matrix metalloproteinase (MMP) generated collagen type I and III degradation fragments and an N-terminal propeptide of collagen III, as a marker of collagen type III production, in three rat models of kidney fibrosis: renal mass reduction (5/6) nephrectomy, n=7, progressive glomerulonephritis (chronic anti-Thy1.1 nephritis, n=6) and adenine crystal induced nephropathy (n=5). Healthy rats served as controls (n=6).

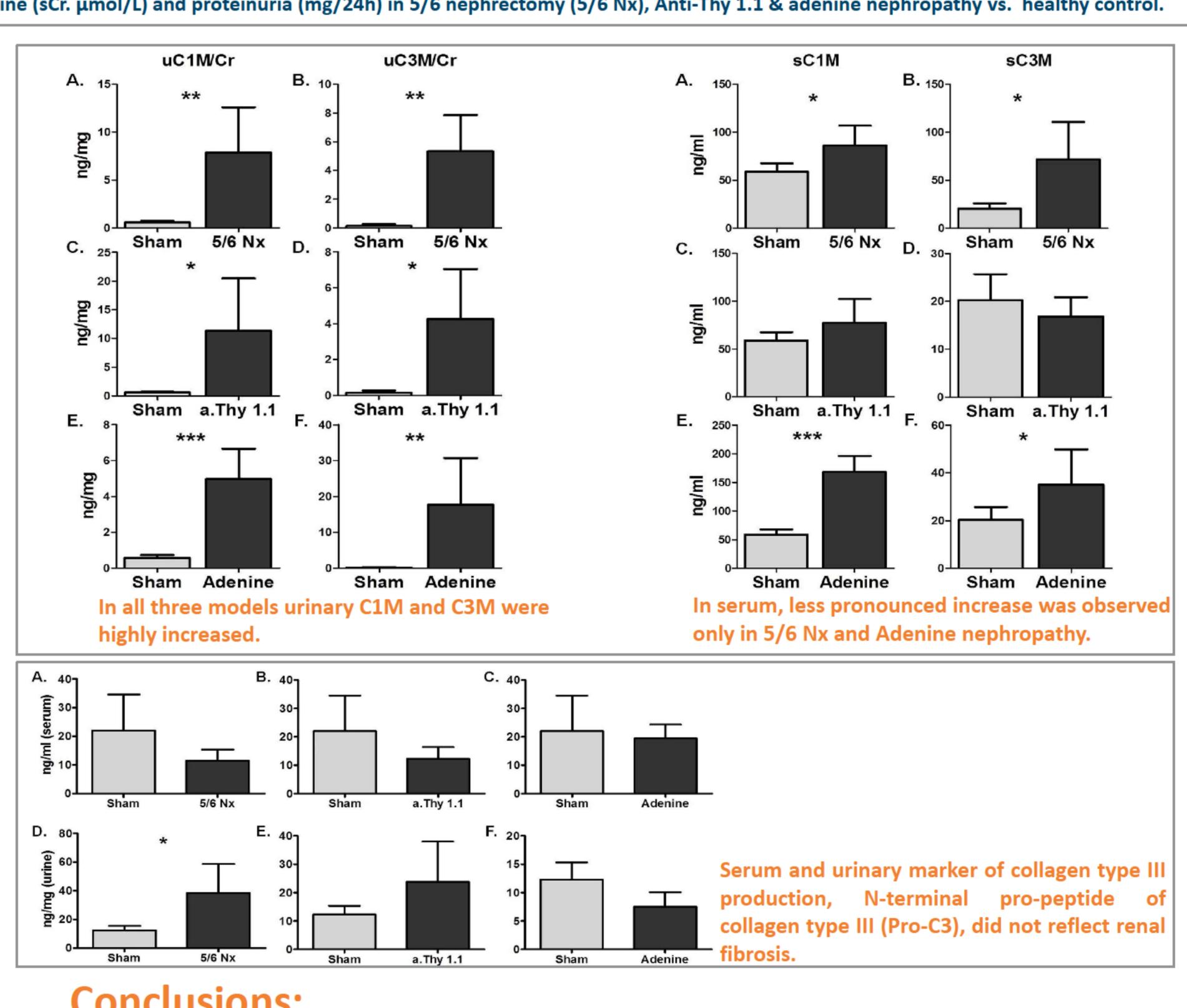
The Protein FingerprintTM Technology

The combination of a signature protein and a pathology dependent protease results in the release of unique tissue degradation fragments that have specific neo-epitopes and are thus pathologyspecific.

Protein Fingerprints™ are tissue derived biomarkers quantifiable in serum and urine.


The Biomarkers C₁M

uC1M C3M


uC3M sC3M Measured in urine Measured in serum Pro-C3

Measured in urine and serum Common feature of fibrosis is a dysregulated equilibrium between matrix formation and degradation. During fibrosis stages, both MMPmediated degradation and de novo collagen synthesis are up-regulated. C1M and C3M are MMP mediated collagen type I and III degradation fragments while Pro-C3 is a marker of collagen type III *de novo* formation.

Results:

	Col. I	р	Col. III	р	α-SMA	р
Urinary C1M/Cr	0.581	0.003	0.569	0.004	0.885	<0.00
Urinary C3M/Cr	0.675	<0.001	0.632	0.001	0.737	<0.00
Urinary Pro-C3	-0.087	n.s.	0.208	n.s.	0.397	n.s.
Serum C1M	0.511	0.013	0.551	<0.006	0.571	0.004
Serum C3M	0.328	n.s.	0.593	0.002	0.271	n.s.
Serum Pro-C3	-0.034	n.s.	-0.261	n.s.	-0.377	n.s.
sCr	0.694	<0.001	0.722	<0.001	0.688	<0.00
Proteinuria	-0.140	n.s.	-0.086	n.s.	0.343	n.s.
	Protein	Proteinuria		sCr		р
Urinary C1M/Cr	0.58	5	0.007	0.771		<0.001
Urinary C3M/Cr	0.03	5	n.s.	0.899		<0.001
Urinary Pro-C3	0.87	0	<0.001	0.425		n.s.
Serum C1M	-0.23	5	n.s.	0.675		<0.001
Serum C3M	0.15	9	n.s.	0.612		0.001
Serum Pro-C3	-0.64	0	0.014	-0.266		n.s.

Conclusions:

- ✓ Markers of MMP-mediated collagen type I (C1M) and III (C3M) degradation in both serum and urine were increased in all animal models of renal fibrosis, in particular urinary markers (C1M and C3M) closely reflected renal fibrosis.
- ✓ Collagen type III formation fragments (Pro-C3) did not reflect renal fibrosis.
- ✓ The measurement of C3M in the urine may represent a novel non-invasive diagnostic approach for kidney fibrosis.

Contact: fge@nordicbioscience.com or pboor@ukaachen.de

ePosters

supported by

Roche Ltd.

F. Hoffmann- L

