How much increase in Malnutrition-Inflammation Score (MIS) really reflects a progression toward malnutrition?

Hiroshi Tanaka, Shoji Tsuneyoshi, Miki Sawa, Kiichiro Fujisaki, Yasunori Daijo

Division of Nephrology, Department of Internal Medicine Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan

INTRODUCTION

- •Malnutrition, or protein-energy wasting (PEW), is regarded to be one of the most common morbidity, which is associated with high mortality, in dialysis population.
- •Malnutrition-Inflammation Score (MIS), developed by Kalantar-Zadeh (2001), is composed of 7 factors (dry weight loss, food intake, GI symptoms, physical activities, comorbidities, fat and muscle) derived from subjective global assessment (SGA) and additional 3 objective factors (body mass index, serum albumin and total iron binding capacity). MIS has been regarded to be one of the most efficient way to detect malnourished dialysis patients.
- However, MIS fluctuates over a period of time in a single patient. It is unknown how much increase in MIS actually reflects a progression toward malnutrition.

METHODS

- •Study population:
 - –A retrospective cohort study
 - -MIS has been performed semiannually by dialysis nurses to all the patients on maintenance hemodialysis in a single dialysis center, since october 2010.
 - -The patient who had at least 3 measurements until december 2013 were included in the present analysis.
- •MIS:
 - –Each 10 component of MIS has 0-3 points with a higher point suggesting toward malnutrition;
 - -MIS is calculated as a sum of those components, with a minimum (best) score of 0 and a maximum (worst) score of 30.
- •Fluctuation of MIS:
 - –Evaluated by standard deviations (SDs) of serial MIS measurements in each patient.
- -Background clinical factors which might influence MIS fluctuation were analyzed.
- •Statistical analysis: -StatView 5.0 (SAS Institute Inc.) for Macintosh.

References

- •Kalantar-Zadeh K et al, Am J Kidney Dis. 2001;38(6):1251-63 MIS was introduced.
- •Kalantar-Zadeh K et at, Nephrol Dial Transplant. 2004;19:1507-1519
- "The MIS appears to be a useful, short- term tool to risk-stratify MHD patients" in a 378 HD patient cohort study.
- •Rambod M et al, Am J Kidney Dis. 2009;53:298-309
- "Each 2-unit increase in MIS was associated with a 2-fold greater death risk, ie, adjusted death hazard ratio of 2.03" in 809 HD patients during a max-5-year followup. •Ho LC et al, Blood Purif. 2010;29:308-16
- "For every unit increase in the MIS, the adjusted hazard ratio for mortality was 1.177" in 141 PD patients in Taiwan, for up to 18 month followup.

RESULTS

- •Nutritional status of the population (Table 1):
 - -A total of 104 patients (age of 67.7 ± 13.1 years, m±SD, M:F = 69:35) were included in the analysis; 6 died and 5 transferred to other dialysis clinics between november 2011 and march 2014
 - -MIS: 6.49±3.70
 - -Standardized triceps skin fold thickness (TSF): 94.4±39.2%
 - -Standardized arm muscle area (AMA): 99.4±20.8%.
- Multivariate stepwise analysis (Table 2):
 - -MIS fluctuated significantly if background status has less dry weight and lower serum albumin (P<0.001)
 - -Supports that MIS fluctuation might reflect malnutrition at least partially.

Table 2 Correlation with standard deviation of MIS

	ai ii v	ariato	manavanato				
	adj-R2	Р	В	SE	ß		
age	0.046	0.017			ns		
DW	0.164	<0.0001	-0.03	0.01	-0.38		
%TSF	0.063	<0.0001			ns		
%AMA	0.025	0.06			ns		
height	0.036	0.03			ns		
BMI	0.126	0.0001			ns		
Alb	0.07	0.0041	-0.39	0.19	-0.19		
TIBC	0.055	0.0098					

- •In patients with MIS less than 8 (n=78), i.e., those regarded to be without PEW
 - -SDs of MIS were 1.62±0.71, significantly less than those in patients with MIS 8 or higher (n=26, 2.66±1.11, P<0.001; Table 1).
 - -Considering that 2SDs cover 95%, which most-likely within range of error, an increase in MIS larger than 3.24 (=1.62 x 2) could be regarded as a progression toward PEW.

T	a	b	le	•	1

le	• 1			All =10			S > 1=26	= 8 3		S <		Р	
	MIS		6.49	±	3.70	11.78	±	3.28	4.73	±	1.48	<0.001	
	SGA		4.55	±	2.68	8.00	±	2.77	3.40	±	1.31	<0.001	
	Alb	g/dL	3.66	±	0.32	3.47	±	0.35	3.73	±	0.28	<0.001	
	%TSF		94.4%	±	39.2%	64.0%	±	24.9%	104.5%	±	37.9%	<0.001	
	%AMA		98.5%	±	22.9%	79.1%	±	22.9%	104.9%	±	19.1%	<0.001	
	Dry weight (max)	kg	57.5	±	12.5	44.6	±	7.1	61.8	±	10.9	<0.001	
	SD of MIS		1.88	±	0.94	2.66	±	1.11	1.62	±	0.71	<0.001	
	SD of SGA		1.56	±	0.77	2.11	±	0.93	1.37	±	0.61	<0.001	
	SD of Alb	g/dL	0.41	±	0.26	0.46	±	0.28	0.40	±	0.26	0.31	
	SD of %TSF		33.0%	±	18.2%	27.1%	±	15.5%	35.0%	±	18.7%	0.057	

- •This hypothesis was supported by the following findings:
- -The patients with an increase in MIS from an average of the previous MIS by 3.5 or more (n=15) had
- significantly higher MIS and progressive decline in arm muscle area, compared with those whose increment were less (n=89; Table 3).

Table 3 Fluctuating-MIS patients has higher MIS and are losing arm muscle

ai iii iiiuscic	>=	3.5	<	3.5	
(average ± SD)	(n=	=15)	(n	=89)	Р
MIS	8.27	± 5.42	6.19	± 3.27	0.043
SGA	5.87	± 3.95	4.32	± 2.36	0.037
%TSF	90.1%	± 59.5%	95.1%	± 35.0%	0.65
%AMA	94.5%	± 27.2%	99.1%	± 22.2%	0.47
change in %TSF -	10.6%	± 24.5%	-3.4%	± 36.3%	0.46
change in %AMA	-7.9%	± 9.8%	2.4%	± 14.8%	0.011

CONCLUSION

Increase in MIS by 3.5 or more from an average of the previous MIS measurements is likely to represent a true progression toward malnutrition rather than a measurement error.

