THE EFFECT OF EVEROLIMUS IN PATIENTS WITH RENAL ANGIOMYOLIPOMA ASSOCIATED WITH TUBEROUS SCLEROSIS COMPLEX

Nicolás Roberto Robles¹, Ramón Peces², Álvaro Gómez-Ferrer³, Felipe Villacampa⁴, Jose Luis Álvarez-Ossorio⁵, Pedro Pérez⁶, Enrique Trilla⁷, Bernardo Herrera⁸, Javier Nieto⁹, Joaquín Carballido¹⁰, Urbano Anido¹¹, Cristina Meseguer¹², and Roser Torra¹³

¹Nephrology Department, Hospital Infanta Cristina, Badajoz (Spain); ²Nephrology Department, Hospital Universitario La Paz, Madrid (Spain); ³Urology Department, Instituto Valenciano de Oncología, Valencia (Spain); ⁴Urology Department, Hospital 12 de Octubre, Madrid (Spain); Urology Department, Hospital Puerta del Mar, Cádiz (Spain); Oncology Department, Hospital Clínico San Carlos, Madrid (Spain); Urology Department, Hospital Vall d'Hebron, Barcelona (Spain); ⁸Urology Department, Hospital Virgen de la Victoria, Málaga (Spain); ⁹Nephrology Department, Hospital Universitario de Ciudad Real (Spain); ¹⁰Urology Department, Hospital Puerta de Hierro Majadahonda, Majadahonda (Spain); ¹¹Oncology Department, Hospital Clínico de Santiago de Compostela, Santiago de Compostela (Spain); ¹²Medical Department, Novartis Farmacéutica S.A., Barcelona (Spain); ¹³Nephrology Department, Fundació Puigvert, Barcelona (Spain)

23. Genetic diseases and molecular genetics.

53rd ERA-EDTA Congress - Vienna, Austria; May 21st-24th, 2016

INTRODUCTION

- Tuberous sclerosis complex (TSC) is a genetic disorder caused by TSC1/TSC2 mutations, which trigger mammalian target of rapamycin (mTOR) activation and undercontrolled cellular proliferation¹. The disease is characterized by growth of non-malignant tumours, including renal angiomyolipomas (AML) in up to 80% of patients².
- Renal AML are tumours whose progressive enlargement may increase the risk of haemorrhages and encroach renal parenchyma³. Preserving kidney function and preventing haemorrhages are therefore the main goals of AML treatment, which has mainly included surgical procedures or embolization.
- The mTOR inhibitor everolimus has arisen as a non-surgical treatment alternative for TSC-related renal AMLs. Its administration over the EXIST-2 trial supported everolimus efficacy for these tumours^{4,5}, with a manageable safety profile consistent with previous reports on other TSC populations^{6,7}. This positive benefit/risk balance was the basis for requesting the European Medicines Agency's authorization for this indication.

OBJECTIVE

We conducted this trial to provide further knowledge on the effect of everolimus in patients with TSC-related renal AMLs under real practise conditions.

METHODS

Study design

This was a Spanish, open-label, single-arm, phase IIIb, expanded access trial.

Patient population

The study included adult patients with TSC-related renal AML (Figure 1).

Figure 1. Main selection criteria

Main inclusion criteria	Main exclusion criteria
Patients aged ≥18 years At least one renal AML of ≥3 cm in its longest diame-	 AML requiring surgery AML-related bleeding/embolisation within the previous 6 months
ter as per CT or MRI	 Prior heart attack, angina pectoris, hemorrhagic stroke related to atherosclerosis, impaired lung func- tioning, organ transplantation, or surgery within the previous 2 months
Definite diagnosis of TSC according to the modified Gomez criteria*	
	 Presence of the following conditions: significant hae- matological/hepatic abnormality, serum creatinine >1.5 times the ULN, haemorrhagic diathesis, treat- ment with vitamin K antagonist, uncontrolled hyperlipi- daemia/diabetes, uncontrolled/severe disease, or on- going/active infection (except for hepatitis B/C virus)
	; CT, computed tomography; MRI, magnetic resonance imaging;

TSC, tuberous scierosis complex; ULN, upper limit of normal. *Roach et al. J Child Neurol. 1998;13:624-8; Hyman et Whittemore. Arch Neurol. 2000;57:662-5.

Study treatment and assessments

 Everolimus was initiated at 10 mg once daily, adjusted on the basis of safety findings, and prolonged until disease progression, unacceptable toxicity, patient's death/withdrawal, or one year after first patient enrolment (Figure 2).

Figure 2. Study flow chart

Demographics

Medical history

Comorbidities

Kidney CT/MRI

Concomitant

medication

 Clinical examination Laboratory analyses

> Kidney CT/MRI (months 3, 6, 12/end of

treatment) Clinical examination Concomitant medication

 Laboratory Adverse events analyses

Post-treatment safety follow-up (28 days post-treatment)

Concomitant

Adverse events

Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging.

- Radiologic AML response was assessed on CT/MRI scans at months 3, 6, and 12/end of treatment:
 - □ Radiologic response: ≥50% reduction in the sum of volumes of AML target lesions, confirmed in a second scan (approximately 12 weeks later), and absence of new lesions ≥1cm, kidney volume increase >20%, and AML-related grade ≥2 bleeding or need for embolisation/surgery.
- □ Radiologic progression: ≥25% increase in the sum of volumes of AML target lesions and/or ≥20% increase in the volume of either kidney, new lesions ≥1cm, and/or AML-related grade ≥2 bleeding or need for embolisation/surgery.

RESULTS

Patient characteristics

Between May 2013 and May 2014, 19 patients were included (**Table 1**).

Table 1. Baseline patient characteristics (N=19)

Characteristics	Value
Median age, years (IQR)	38.0 (29.0-43.0)
Gender, n (%)	
Female	13 (68.4)
Male	6 (31.6)
Race, n (%)	
White	19 (100)
Median volume of renal AML lesions, ml (IQR)	260.0 (127.8-322.2)
Median volume of right kidney, ml (IQR)	278.0 (184.8-809.6)*
Median volume of left kidney, ml (IQR)	275.5 (173.4-402.4)*

Abbreviations: AML, angiomyolipoma; IQR, interquartile range. *N=18, as one patient had previously undergone nephrectomy.

Study treatment administration

Everolimus was administered for a median of 6.6 (5.3-10.9) months (Table 2).

Table 2. Everolimus administration (N=19)

Characteristics	Value	
Median everolimus exposure, months (IQR)	6.6 (5.3-10.9)	
Dose of 10 mg/day over the whole study, n (%)	11 (57.9)	
Dose reduction/interruption due to adverse events, n (%)	8 (42.1)	
Treatment discontinuation, n (%)	0 (0.0)	
Abbreviations: IQR, interquartile range.		

Efficacy

 Nine (47.4%) patients showed radiologic response of renal AML, after a median of 3.3 (3.0-6.2) months from everolimus initiation; none progressed (Figure 3).

Figure 3. Radiologic angiomyolipoma response (N=19)

■ AML reduction from baseline ≥30% was observed in 11 (57.9%) patients and ≥50% in 9 (47.4%) patients. Reductions in each study visit are summarized in Figure 4.

Figure 4. Reductions in renal angiomiolipoma volume in each study visit

 Right and left kidney volumes decreased in 17 (94.4%) and 14 (87.5%) patients, respectively.

Safety

 Adverse events most frequently included aphthous stomatitis, hypercholesterolaemia, hypertriglyceridaemia, and urinary tract infection (Figure 5).

Figure 5. Most frequent adverse events (N=19)

- Four (21.1%) patients showed grade 3 adverse events; none reached grade 4 (Table 3).
- Only one adverse event was serious: pneumonia.

Table 3. Grade 3/4 adverse events (N=19)

Adverse events	n (%)
Grade 3 adverse events	4 (21.1)
Hypertriglyceridaemia	2 (10.5)
Transaminases increased	1 (5.3)
Hypertension	1 (5.3)
Mucosal inflammation	1 (5.3)
Grade 4 adverse events	0 (0.0)

References

- Kwiatkowski et al. Hum Mol Genet. 2005;14:R251-8.
- Borkowska et al. Int J Dermatol. 2011;50:13-20.
- 3. Bissler et al. Kidney Int. 2004;66:924-34.
- 4. Bissler et al. Lancet. 2013;381:817-24.
- 5. Bissler et al. Nephrol Dial Transplant. 2015;31:111-9.
- 6. Franz et al. Lancet. 2013;381:125-32.
- 7. Kingswood et al. Nephrol Dial Transplant. 2014;29:1203-10.

CONCLUSIONS

- The study findings support the efficacy of everolimus in reducing TSC-related renal AML lesions and overall kidney volumes, with evident benefits just a few months after starting the treatment.
- These benefits were accompanied by a manageable safety profile that did not raise new safety concerns.
- Everolimus may therefore contribute to improve the management of TSC-related renal AML in clinical practice.

