# Bicarbonate treatment restores renal Klotho production: a pilot study







Valérie Hage <sup>1</sup> ,Cedric Villain <sup>1</sup>, Solenne Pelletier <sup>1</sup>, Maurice Laville <sup>1</sup>, Jocelyne Drai <sup>2</sup>, Denis Fouque <sup>1</sup>

(1) Department of Nephrology-Dialysis-Nutrition, Centre Hospitalier Lyon-Sud, Pierre Bénite, France; (2) Laboratory of biochemistry, Centre Hospitalier Lyon-Sud, Pierre Bénite, France

#### **OBJECTIVES**

Metabolic acidosis is commonly observed in chronic kidney disease (CKD) and a positive relationship exists between serum bicarbonate (sbicar) and  $\alpha$ -Klotho in CKD patients. We tested the hypothesis that correcting acidosis may improve renal Klotho production and serum  $\alpha$ -Klotho.

#### METHODS

The study involved 20 patients with a known kidney disease referred for renal check-up. Inclusion criteria were age  $\geq 18$  yr, CKD stage 3-5ND, sbicar < 22 mmol/l, not receiving bicarbonate supplementation. Patients then received 1g oral sodium bicarbonate 3x/d for 4 weeks and were evaluated at two and four weeks by blood and urine measurements.

### RESULTS

| Variable                   | Value          |
|----------------------------|----------------|
| Age (yr)                   | 68 (58.5-77.8) |
| Gender (% women)           | 57.1           |
| Body mass index (kg/m²)    | 26.3 ±4.7      |
| α- Klotho (pg/mL)          | 614.6 ±287.2   |
| FGF 23 (RU/mL)             | 469.9 ±628.1   |
| 25-OH Vitamin D (nmol/L)   | 51.0 ±24.9     |
| intact parathyroid hormone | 92.6 ±97.4     |
| (pg/mL)                    |                |
| C Reactive Protein (mg/L)  | 6.0 ±5.7       |
| Albumin (g/L)              | 38.8 ±3.7      |
| Bicarbonate (mmol/L)       | 19.3 ±1.7      |
| Calcium (mmol/L)           | 2.3 ±0.1       |
| Phosphorus (mmol/L)        | 1.2 ±0.4       |
| Creatinine (µmol/L)        | 213.4 ±161.7   |
| eGFR (CKD-EPI,             | 31.5 ±14.0     |
| mL/min/1.73m²)             |                |
| Hemoglobin (g/L)           | 116.6 ±18.3    |
| Proteinuria (g/d)          | 1.2 ±1.4       |
| Urine pH                   | 6.4 ±0.8       |
| Diuresis (mL/24h)          | 1417 ±784      |
| Urine Klotho/Creatinine    | 34.6±31.6      |

Table 1. Patients characteristics and serum values at baseline

| Urinary Klotho/Creatinine Ratio (pg/mmol) | 200        |       | *        | * |
|-------------------------------------------|------------|-------|----------|---|
|                                           | 150        | BICAR |          |   |
|                                           | 100 -      |       |          |   |
|                                           | 99 -       |       |          |   |
|                                           | <b>o</b> - |       | <u> </u> |   |
|                                           |            | 0     | 2        | 4 |
|                                           |            |       | Weeks    |   |

Figure 1. Variations of urinary Klotho/creatinine ratio during bicarbonate treatment (mean+/-SD, n=20; \* indicates p <0.05).

| Mean ± SD            | Baseline     | Wk 2         | P       | Wk 4         | P       |
|----------------------|--------------|--------------|---------|--------------|---------|
| Klotho (pg/mL)       | 614.6 ±287.2 | 630.2 ±333.5 | 0.35    | 632.1 ±284.9 | 0.78    |
| Bicarbonates(mmol/L) | 19.3 ±1.7    | 23.9 ±2.9    | < 0.001 | 23.4 ±1.9    | < 0.001 |

Table 2: Serum values before, two and four weeks after bicarbonate supplementation (n=20, ANOVA test from baseline values)

# **DISCUSSION**

We found for the fisrt time that correcting **acidosis** is associated with higher urine/creatinine ratio of  $\alpha$ -Klotho at week 2 and 4 after oral alkaline therapy. We can speculate that the **tubular** function changes that occur in response to metabolic acidosis may be implicated in the altered expression of **serum** and **urine**  $\alpha$ -klotho at this secretory site.

Correcting acidosis may restore α-klotho synthesis or its cleavage process first in the urine then in serum.

## CONCLUSIONS

Correcting **acidosis** by oral administration of sodium bicarbonate rapidly restores the reduced tubular synthesis of soluble  $\alpha$ -Klotho in CKD patients. However, a four-week bicarbonate treatment was not able to significantly increase serum  $\alpha$ -Klotho. A longer study with more patients may confirm this interesting modification.

## Corresponding author:

Dr Valerie HAGE
Centre Hospitaliser Lyon-Sud
165 chemin du Grand-Revoyet
69495 PIERRE-BENITE, FRANCE
E-mail: valohajj@hotmail.com







