Peritoneal Dialysis drop-out in contemporary cohort: lower technique failure and higher transplantation rate <u>Andreia Campos¹</u>, Laetitia Teixeira², M J Carvalho³, Sofia Santos¹, A Cabrita¹, A Rodrigues³ ¹CHP-Hospital de Santo António; ² ICBAS-UP; ³CHP-Hospital de Santo António / UMIB ### INTRODUCTION Up-dated peritoneal dialysis (PD) allows similar patient survival in comparison with hemodialysis (HD), however it still remains underutilized. patient drop-out lower technique survival The aim of this study was to investigate the time course of PD outcomes, patient and technique survival taking into account access to renal transplantation (RT). ### **METHODS** Consecutive incident adult end-stage renal disease patients starting PD were identified from an ongoing registry-base prospective study of quality assessment. **C 1** • 1985-1990 **C 2**• 1991-1995 • 1996-2000 3 C 4 -2000 • 2001-2005 **C 5**• 2006-2010 C 6 • 2011-2014 Demographics Clinical variables Technique modality Survival regression models taking competing risks into account were performed \rightarrow identify potential prognostic factors for death and for transfer to HD (adjusted for age, gender, diabetes, cohort era, automated peritoneal dialysis (APD) use and first treatment modality - PD first, PD after HD, PD after renal transplant (RT)). # **RESULTS** | 525 patients | n | % | | | | | | | | |----------------------|-----|------|--|--|--|--|--|--|--| | Gender | | | | | | | | | | | Male | 211 | 40.2 | | | | | | | | | Female | 314 | 59.8 | | | | | | | | | Technique | | | | | | | | | | | APD | 218 | 41.5 | | | | | | | | | CAPD | 307 | 58.5 | | | | | | | | | First RRT | | | | | | | | | | | DP first | 296 | 56.4 | | | | | | | | | HD | 164 | 31.2 | | | | | | | | | RT | 65 | 12.4 | | | | | | | | | Reason for PD | | | | | | | | | | | Access falilure | 203 | 38.7 | | | | | | | | | Others | 322 | 61.3 | | | | | | | | | CKD Ethiology | | | | | | | | | | | Diabetic nephropathy | 76 | 14.5 | | | | | | | | | Sistemic Disease | 48 | 9.1 | | | | | | | | | Chronic GN | 121 | 23.1 | | | | | | | | | ADPKD | 36 | 6.9 | | | | | | | | | Intersticial disease | 39 | 7.4 | | | | | | | | | Unknown | 136 | 26.0 | | | | | | | | | Other | 68 | 13.0 | Diabetes | 120 | 22.9 | | | | | | | | | HTA | 352 | 67,0 | | | | | | | | | | | | | | | | | | | Mean age at PD admission → 48 years (±15,7) Follow-up in PD (median time) → 23 months (P25 9 months P75 41.5 months) APD | | 1985-1990 | 1991-1995 | 1996-2000 | 2001-2005 | 2006-2010 | 2011-2014 | P | |----------------|-----------|-----------|-----------|-----------|-----------|-----------|--------| | | | | APD | | | | <0.001 | | No | 35 (100) | 77 (95.1) | 66 (62.9) | 47 (41.2) | 39 (34.8) | 43 (55.1) | | | Yes | 0 (0) | 4 (4.9) | 39 (37.1) | 67 (58.8) | 73 (65.2) | 35 (44.9) | | | First RRT | | | | | | | | | DP first | 23 (65.7) | 44 (54.3) | 56 (53.3) | 60 (52.6) | 59 (52.7) | 54 (69.2) | | | HD | 10 (28.6) | 27 (33.3) | 44 (41.9) | 39 (34.2) | 32 (28.6) | 12 (15.4) | | | RT | 2 (5.7) | 10 (12.3) | 5 (4.8) | 15 (13.2) | 21 (18.8) | 12 (15.4) | | | Motif for DP | | | | | | | | | Access failure | 18 (51.4) | 38 (46.9) | 47 (44.8) | 64 (56.1) | 25 (22.3) | 11 (14.1) | | | Others | 17 (48.6) | 43 (53.1) | 58 (55.2) | 50 (43.9) | 87 (77.7) | 67 (85.9) | | | Diabetes | | | | | | | | | No | 22 (62.9) | 57 (70.4) | 79 (75.2) | 93 (81.6) | 95 (84.8) | 59 (75.6) | | | Yes | 13 (37.1) | 24 (29.6) | 26 (24.8) | 21 (18.4) | 17 (15.2) | 19 (24.4) | | | 2,3% | | | | 9. 4 | | | | 13,0% 27,6% Diabetes Gender Reason for PD Death Transfer to haemodialysis Transplantation Death - 12,7 vs 21,8% Technique failure - 19,2 vs 34,2% Transplantation - 18,1 vs 27,4% Age poor in the oldest Diabetes more risk of death • Era cohort -> lower risk in C6 (recent cohort) Recent cohort → lower transfer to HD Age → more transplantation in youngers APD → lower transplantation rates Recent cohort → more renal transplant ## **CONCLUSIONS** Drop out due to technique failure decreased with contemporary PD, after adjustment for relevant clinical variables. Access to renal transplantation is a competing event to include in survival analysis and a relevant factor to valorize in integrated patient care. Age Cohort era Survival Analysis – competing risks (Fine & Gray model) First RRT Renal transplantation