Peritoneal Dialysis drop-out in contemporary cohort: lower technique failure and higher transplantation rate

<u>Andreia Campos¹</u>, Laetitia Teixeira², M J Carvalho³, Sofia Santos¹, A Cabrita¹, A Rodrigues³

¹CHP-Hospital de Santo António; ² ICBAS-UP; ³CHP-Hospital de Santo António / UMIB

INTRODUCTION

Up-dated peritoneal dialysis (PD) allows similar patient survival in comparison with hemodialysis (HD), however it still remains underutilized.

patient drop-out

lower technique survival

The aim of this study was to investigate the time course of PD outcomes, patient and technique survival taking into account access to renal transplantation (RT).

METHODS

Consecutive incident adult end-stage renal disease patients starting PD were identified from an ongoing registry-base prospective study of quality assessment.

C 1 • 1985-1990

C 2• 1991-1995

• 1996-2000

3 C 4 -2000 • 2001-2005 **C 5**• 2006-2010

C 6
• 2011-2014

Demographics

Clinical variables

Technique modality

Survival regression models taking competing risks into account were performed \rightarrow identify potential prognostic factors for death and for transfer to

HD (adjusted for age, gender, diabetes, cohort era, automated peritoneal dialysis (APD) use and first treatment modality - PD first, PD after HD, PD after renal transplant (RT)).

RESULTS

525 patients	n	%							
Gender									
Male	211	40.2							
Female	314	59.8							
Technique									
APD	218	41.5							
CAPD	307	58.5							
First RRT									
DP first	296	56.4							
HD	164	31.2							
RT	65	12.4							
Reason for PD									
Access falilure	203	38.7							
Others	322	61.3							
CKD Ethiology									
Diabetic nephropathy	76	14.5							
Sistemic Disease	48	9.1							
Chronic GN	121	23.1							
ADPKD	36	6.9							
Intersticial disease	39	7.4							
Unknown	136	26.0							
Other	68	13.0							
Diabetes	120	22.9							
HTA	352	67,0							

Mean age at PD admission → 48 years (±15,7)

Follow-up in PD (median time) → 23 months

(P25 9 months P75 41.5 months)

APD

	1985-1990	1991-1995	1996-2000	2001-2005	2006-2010	2011-2014	P
			APD				<0.001
No	35 (100)	77 (95.1)	66 (62.9)	47 (41.2)	39 (34.8)	43 (55.1)	
Yes	0 (0)	4 (4.9)	39 (37.1)	67 (58.8)	73 (65.2)	35 (44.9)	
First RRT							
DP first	23 (65.7)	44 (54.3)	56 (53.3)	60 (52.6)	59 (52.7)	54 (69.2)	
HD	10 (28.6)	27 (33.3)	44 (41.9)	39 (34.2)	32 (28.6)	12 (15.4)	
RT	2 (5.7)	10 (12.3)	5 (4.8)	15 (13.2)	21 (18.8)	12 (15.4)	
Motif for DP							
Access failure	18 (51.4)	38 (46.9)	47 (44.8)	64 (56.1)	25 (22.3)	11 (14.1)	
Others	17 (48.6)	43 (53.1)	58 (55.2)	50 (43.9)	87 (77.7)	67 (85.9)	
Diabetes							
No	22 (62.9)	57 (70.4)	79 (75.2)	93 (81.6)	95 (84.8)	59 (75.6)	
Yes	13 (37.1)	24 (29.6)	26 (24.8)	21 (18.4)	17 (15.2)	19 (24.4)	
2,3%				9. 4			

13,0%

27,6%

Diabetes

Gender

Reason for PD

Death Transfer to haemodialysis
Transplantation

Death - 12,7 vs 21,8%
Technique failure - 19,2 vs 34,2%
Transplantation - 18,1 vs 27,4%

Age poor in the oldest
Diabetes more risk of death

• Era cohort -> lower risk in C6 (recent cohort)

Recent cohort → lower transfer to HD

Age → more transplantation in youngers

APD → lower transplantation rates

Recent cohort → more renal transplant

CONCLUSIONS

Drop out due to technique failure decreased with contemporary PD, after adjustment for relevant clinical variables.

Access to renal transplantation is a competing event to include in survival analysis and a relevant factor to valorize in integrated patient care.

Age

Cohort era

Survival Analysis – competing risks (Fine & Gray model)

First RRT

Renal

transplantation

