Serum Albumin Level has Association with Both Graft Failure and Mortality in Kidney Transplant Recipients

Hee Jung Jeon¹, Soyon Rhee¹, Dong Ho Shin¹, Jieun Oh¹, Young Hoon Kim², and Jung Pyo Lee³

¹Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital,

²Department of Surgery, Asan Medical Center and University of Ulsan College of Medicine,

³Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea

Poster number: MP742

Background: The studies concerned the association between post-transplant serum albumin concentration and post-transplant outcomes in kidney transplant recipients (KTRs) are scarce.

Methods: To evaluate the impact of serum albumin level on graft and patient survival, we performed a retrospective multi-center cohort study. A total of 2779 KTRs who underwent renal transplantation from Jan 1997 to Jan 2012 were classified into two groups according to the level of serum albumin at 1 year after transplantation (higher albumin group, ≥4.0 g/dL, n=1955 vs. lower albumin group, <4.0 g/dL, n=824). The Cox proportional hazard model was adjusted with age and gender of recipient, donor type, age of donor, diabetes mellitus, and estimated glomerular filtration rate (eGFR) at 1 year after transplantation.

Results: The mean age of the recipients was 41.9±11.4 (range, 18-73) years, and 59.2% were male. The rate of graft failure was higher in lower albumin group compared to higher albumin group (Hazard ratio [HR] 1.840, 95% confidence interval [CI] 1.370-2.470, P<0.001), even though eGFR at 1 year after transplantation was not different between the two groups (61.8±19.8 vs. 62.0±15.8 mL/min, P=0.722). Both all-cause mortality and non-cardiovascular mortality rates were higher in lower albumin group (HR 2.110, 95% CI 1.189-3.743, P=0.011, and HR 2.621, 95% CI 1.177-5.834, P=0.018, respectively). Every 1.0 g/dL higher serum albumin concentration was associated with 68.2% lower all-cause mortality (HR 0.318, 95% CI 0.201-0.504, P<0.001).

Conclusion: Serum albumin level at 1 year after transplantation is a prognostic factor for graft failure and patients' mortality in KTRs. Therefore, evaluation and management for hypoalbuminemia should be considered to improve outcomes in KTRs.

INTRODUCTION

- As in dialysis patients, hypoalbuminemia is frequently found in patients with kidney transplantation and is associated with all-cause mortality.
- It has been reported that inflammation, malnutrition, and the use of steroids may lead to hypoalbuminemia after kidney transplantation. Guijarro C et al. Am J Kidney Dis 1996;27:117–123.

Becker BN et al. Transplantation 1999;68:72–75. Dahlberg R et al. J Ren Nutr 2010;20:392-397. Franch-Arcas G Clin Nutr 2001;20:265-269. Hwang JH et al. BMC Nephrol 2015;16:109-120.

PURPOSE

To evaluate the impact of post-transplant serum albumin level on graft and patient survival in kidney transplant recipients

METHODs

- A Retrospective multi-center study
 - Kangdong Sacred Heart Hospital (Hallym University College of Medicine)
 - Seoul National University Hospital (Seoul National University College of Medicine)
 - Asan Medical Center (Ulsan University College of Medicine)
- Endpoint : Graft Failure,

All-cause Mortality & Non-Cardiovascular Mortality

Baseline characteristics of study population

	Albumin <4g/dL (n=824)	Albumin ≥4g/dL (n=1955)	Total (N=2779)	P-value
Age (years)	45.0 ± 11.1	40.5 ± 11.2	41.9 ± 11.4	<0.001
Sex, male (%)	430 (52.2%)	1215 (62.1%)	1645 (59.2%)	<0.001
Cause of ESRD (%)				<0.001
Glomerulonephritis	132 (17.6%)	471 (25.7%)	603 (23.4%)	
Diabetes mellitus	141 (18.8%)	243 (13.3%)	384 (14.9%)	
Hypertension	41 (5.5%)	164 (9.0%)	205 (7.9%)	
Others	162 (21.7%)	310 (17.0%)	472 (18.3%)	
Unknown	273 (36.4%)	644 (35.2%)	917 (35.5%)	
Type of dialysis (%)				0.954
Pre-emptive	35 (9.9%)	105 (9.6%)	140 (9.7%)	
Hemodialysis	243 (69.0%)	765 (69.9%)	1008 (69.7%)	
Peritoneal dialysis	61 (17.3%)	179 (16.4%)	240 (16.6%)	
Both	13 (3.7%)	45 (4.1%)	58 (4.0%)	
Living donor (%)	585 (72.4%)	1490 (77.4%)	2075 (75.9%)	0.006
Acute Rejection (%)	124 (15.0%)	255 (13.0%)	379 (13.6%)	<0.001
Calcineurin inhibitor (%)				<0.001
Cyclosporin	358 (54.8%)	731 (46.2%)	1089 (48.7%)	
Tacrolimus	295 (45.2%)	850 (53.8%)	1145 (51.3%)	
Anti-metabolite (%)				<0.001
Mycophenolate	364 (64.8%)	1057 (75.5%)	1421 (72.4%)	
Azathioprine	166 (29.5%)	269 (19.2%)	435 (22.2%)	

RESULTs

Clinical and Laboratory findings of study population

	Albumin <4g/dL (n=824)	Albumin ≥4g/dL (n=1955)	Total (N=2779)	P-value
Hypertension (%)	679 (82.4%)	1673 (85.6%)	2352 (84.7%)	0.036
Diabetes mellitus (%)	191 (23.2%)	324 (16.6%)	515 (18.5%)	<0.001
Body mass index (kg/m²)*	22.5 ± 3.2	22.2 ± 3.1	22.3 ± 3.1	0.038
Smoking (%) Never Current smoker	659 (80.0%) 71 (8.6%)	1524 (78.0%) 224 (11.5%)	2183 (78.6%) 295 (10.6%)	0.076
Ex-smoker	94 (11.4%)	205 (10.5%)	299 (10.8%)	
Hemoglobin (g/dL)*	12.6 ± 2.2	13.6 ± 1.9	13.3 ± 2.0	<0.001
Creatinine (mg/dL)*	1.3 ± 1.1	1.3 ± 0.6	1.3 ± 0.8	0.133
eGFR (ml/min)*	61.8 ± 19.8	62.0 ± 15.8	62.0 ± 17.0	0.722
Calcium (mg/dL)*	9.2 ± 0.6	9.5 ± 0.6	9.4 ± 0.6	<0.001
Phosphorus (mg/dL)*	3.6 ± 0.7	3.6 ± 0.7	3.6 ± 0.7	0.020
Intact PTH (ng/pg)*	85.1 ± 93.5	104.2 ± 139.9	98.2 ± 127.2	0.119
Cholesterol (mg/dL)*	177.1 ± 36.1	178.8 ± 33.1	178.3 ± 34.0	0.233
Triglyceride (mg/dL)*	129.5 ± 67.2	125.5 ± 57.9	126.8 ± 61.0	0.198
LDL (mg/dL)*	104.0 ± 26.4	100.4 ± 27.4	101.5 ± 27.1	0.020
HDL (mg/dL)*	57.8 ± 15.8	58.7 ± 15.9	58.4 ± 15.9	0.274

* measured at 1 year post-transplant

1-year serum Albumin & Graft survival

1-year serum Albumin & All-cause Mortality

1-year serum Albumin & Non-Cardiovascular Mortality

CONCLUSION

Serum albumin level at 1 year after transplantation is a prognostic factor for graft failure and patients' mortality in kidney transplant recipients. Therefore, evaluation and management for hypoalbuminemia should be considered to improve outcomes in kidney transplant recipients.

