

Validation in a single-center cohort of existing predictive models for delayed graft function after kidney transplantation

Alexander Decruyenaere^{1,*}, Philippe Decruyenaere^{1,*}, Frank Vermassen² and Patrick Peeters³

¹ Third Master in Medicine, Ghent University, Belgium ² Department of Thoracic and Vascular Surgery, Ghent University Hospital, Belgium ³ Department of Nephrology, Ghent University Hospital, Belgium

INTRODUCTION AND AIMS

Long-term graft loss

Reduced recipient survival

- Kidney transplantation is the preferred treatment for patients with ESRD, improving survival, cardiovascular comorbidity, QoL and costs.
- Delayed graft function (DGF):
 - Early postoperative graft dysfunction due to ischemia/reperfusion injury
 - Usually defined as the need for dialysis within the first week after transplantation
 - Deleterious short-term and long-term consequences:
 - Prolonged hospitalization and higher transplantation costs
 - Increased rate of acute rejection
 - Reduced long-term graft function
 - 4 predictive models have been developed [1-4].
- Aim: we want to assess the predictive accuracy of the existing models and identify risk factors that are not included.

METHODS

- Retrospective cohort study of 497 adult kidney transplantations from deceased donors between 2005-2011
- Association between 47 risk factors and DGF: multivariate logistic regression
- Aggregation of existing models into meta-model: stacked regressions
- Predictive accuracy:
 - Discrimination: area under the receiver operating characteristic curve (AUROC)
 - Calibration: Hosmer-Lemeshow test
- Baseline characteristics are presented in Table 1.

	Table 1: Baseline characteristics	
Donor	Age (year)	42.6 ± 14.8
	Male (%)	60.4
	BMI (kg/m²)	24.9 ± 4.2
	DBD (%)	90.3
Recipient	Age (year)	52.8 ± 11.7
	Male (%)	66.6
	BMI (kg/m²)	25.9 ± 4.7
	Duration of dialysis (year)	2.7 ± 1.7
Preservation	Cold ischemia time (hour)	14.2 ± 4.3
	Warm ischemia time (min)	22.3 ± 7.1

Abbreviations: BMI, body-mass index; DBD, donation after brain death.

RESULTS

- Observed incidence of DGF is 12.5%.
- The meta-model only includes predictions of Irish et al. and Zaza et al.: stacked regressions coefficient of 1.495 and 0.229 respectively
- Results of the cohort fitted model are presented in Table 2.
- Discrimination and calibration of the different models are presented in Figure 1.

Table 2: The cohort fitted model using multivariate logistic regression				
	β (SE)	OR (95% CI)	P-value	
Intercept	-3.47 (1.74)			
Donor				
Age (per 10 years)	0.032 (0.01)	1.37 (1.10-1.73)	0.006 **	
BMI (per 1 kg/m²)	-0.10 (0.05)	0.91 (0.82-0.99)	0.041 *	
Serum creatinine (per 1 mg/dL)	1.12 (0.30)	3.05 (1.78-5.67)	<0.001 ***	
DCD: yes vs. no	2.16 (0.38)	8.67 (4.09-18.51)	<0.001 ***	
Recipient				
BMI (per 1 kg/m²)	0.09 (0.03)	1.09 (1.02-1.16)	0.008 **	
Duration of dialysis (per 1 year)	0.22 (0.09)	1.24 (1.04-1.49)	0.020 *	
Preoperative DBP (per 10 mmHg)	-0.25 (0.13)	0.78 (0.61-0.99)	0.049 *	
EF < 40%: yes vs. no	1.36 (0.40)	3.88 (1.73-8.51)	<0.001 ***	

Abbreviations: BMI, body-mass index; CI, confidence interval; DBP, diastolic blood pressure; DCD, donation after cardiac death; EF, ejection fraction; OR, odds ratio; SE, standard error. * significant (P<0.05); ** very significant (P<0.01); *** extremely significant (P<0.001).

Figure 1. ROC curves and calibration curves to assess the discrimination and calibration of the different models. (A) Only the model of Irish et al., the meta-model and the cohort fitted model have a good discriminative capacity. Abbreviations: AUC, area under the curve; CI, confidence interval; ROC, receiver operating characteristic. (B) All existing models overestimate the risk. The meta-model and the cohort fitted model are well calibrated. Abbreviations: DGF, delayed graft function.

CONCLUSIONS

- 4 existing predictive models for DGF overestimate the risk in a cohort with a low incidence of DGF.
- We have identified 2 recipient parameters that are not included in the existing models: cardiac function and preoperative diastolic blood pressure.

Alexander.Decruyenaere@UGent.be **Corresponding authors:** Philippe.Decruyenaere@UGent.be

- Irish et al. Am J Transplant. 2010;10(10):2279-86.
- Jeldres et al. Can Urol Assoc J. 2009;3(5):377-82.
- Chapal et al. Kidney Int. 2014;86(6):1130-9.
- Zaza et al. Intern Emerg Med. 2015;10(2):135-41.

* Both authors contributed equally to this study.