Exploring protein binding of uraemic toxins in patients with different stages of chronic kidney disease and during haemodialysis

Olivier Deltombe¹, Wim van Biesen¹, Griet Glorieux¹, Ziad Massy², Annemieke Dhondt¹, Sunny Eloot¹

¹Department of Nephrology, Ghent University Hospital, Gent, Belgium ²Division of Nephrology, Amiens University Hospital, Amiens, France

INTRODUCTION

The **uraemic syndrome** is characterised by the retention of so-called uraemic toxins, which are classified into three groups: free small water soluble solutes (MW<500Da), middle molecules (MW>500Da) and **protein-bound solutes** [1,2].

It can be hypothesised that the degree of **protein binding changes** in individual patients with the **progression of their CKD**. Also, degree of protein binding can potentially be influenced by **haemodialysis** treatment. In this study, we evaluated the **percentage protein binding (%PB)** in different stages of CKD (i.e. stage 2 to 5) as well as during a haemodialysis session in dialysis patients.

PATIENTS AND METHODS

CKD Patients

95 CKD patients (stage 2-5)
Amiens University Hospital [3-5]

Sampling: In the morning on the occasion of a visit at outpatient clinic

*P<0.05 versus CKD 2 *P<0.05 versus CKD 3

HD Patients

10 stable HD patients Ghent University Hospital

Sampling: At midweek session

RESULTS

CKD Patients

	CKD 2-5	CKD 2	CKD 3	CKD 4	CKD 5
pCG	9[6;15]	7[3;24]	10[6;14]	9[6;16]	8[5;20]
HA	38[34;44]	38[34;42]	38[34;43]	38[35;44]	43[36;45]
IAA	66[61;72]	60[56;66]	67[61;75]	66[61;72]	68[65;71]
IS	88[83;91]	77[71;83]	86[80;90]	89[87;92]°,+	92[90;95]0,+
pCS	96[94;97]	93[89;96]	97[96;97]	96[95;97]	94[93;95]+

°P<0.05 versus CKD 2 +P<0.05 versus CKD 3

p-Cresylglucuronide

Only %PB of IS showed an inverse correlation with renal function.

HD Patients

%PB during course of HD session

%PB at inlet and outlet of the dialyser

DISCUSSION & CONCLUSION

%PB of the highly bound IS increased with advanced CKD stages

- ➤ No correlation between %PB and [albumin].
- ➤ Is result a consequence of **structural changes** (due to an increase in post-translational modifications of the proteins in advanced CKD stages [6]?
- ➤ Is result a consequence of competitive binding?

%PB increased during the dialysis session and at the outlet of the dialyser with respect to the inlet, most pronounced for IAA, IS and pCS

- \triangleright No correlation between $\Delta\%PB$ and Δ [Total Protein].
- > A possible explanation: protein binding of IAA, IS and pCS is strong.
- → Equilibrium is too slow to restore the blood concentration of the free toxin within the time frame of a single passage through the dialyser and within the time frame of a dialysis session once pre-dialysis free fraction has been removed.

Percentage protein binding of IS was higher in more advanced **CKD**. %PB was increased during the **HD** session, most pronounced for the stronger (IAA) and highly (IS and pCS) bound solutes. These findings might imply a slow release of bound solute from the ligand-protein, resulting in fast exhaustion of free (dialysable) solutes, leading to hampered removal.

[1] Duranton F et al., J Am Soc Nephr, 2012; [2] Vanholder R et al., Kidney Int, 2003; [3] Barreto FC et al., Clin J Am Soc Nephrol, 2009; [4] Liabeuf S et al., Nephrol Dial Transpl, 2010; [5] Liabeuf S et al., Plos One, 2013; [6] Gajjala PR et al., Nephrol Dial Transpl 2015 (In press).

