A MINIATURE ARTIFICIAL KIDNEY FOR PERITONEAL DIALYSIS

University Medical Center Utrecht

Martijn E.H. Wagemans¹, Frank Simonis², Diënty H. M. Hazenbrink¹, Jaap A. Joles¹, Karin G. F. Gerritsen¹, ¹University Medical Center Utrecht, Nephrology and Hypertension, Utrecht, ²Nanodialysis BV, Oirschot, NETHERLANDS.

Background and objectives

A miniature artificial kidney for peritoneal dialysis is being developed based on the wearable artificial kidney developed within NEPHRON+ (EU FP7). Concept: continuous regeneration of peritoneal dialysate will maintain a large plasma-dialysate concentration gradient, thereby enhancing blood purification while reducing the number of exchanges.

Cumulative removal

Aims:

- To study efficacy of urea, creatinine, K⁺ and PO_4^{3-} removal as influenced by dialysate flow and number of sorption/electro-oxidation (EO) units.
- To study whether equilibration at physiological $[Ca^{2+}]$, $[Mg^{2+}]$, $[HCO_3^{-}]$ and hypotonic [NaCI]can prevent Ca²⁺, Mg²⁺ and HCO₃⁻ adsorption and Na⁺ release, respectively.

•2L Spent peritoneal dialysate (PD), containing [urea] $20.4 \pm 2.7 \text{mM}$, [creatinine] $0.6 \pm 0.1 \text{mM}$, [K⁺] $3.1 \pm 0.2 \text{mM}$ and $[PO_4^{3-}]$ 1.1±0.2mM, was pumped over a dialyzer (235mL/min). •100mL Dialysate was recirculated counter-currently to PD at 20, 40 or 75 mL/min) over a sorption/EO unit for 180 min (N=3/flow rate). Subsequently, 3 units were applied (3x40 mL/min). •Each unit contained:

Results - II

•Equilibration at [Ca²⁺] 1.2mM and [Mg²⁺] 0.45mM prevented adsorption of these ions (Table 1). •Equilibration at [Na⁺] 120mM prevented Na⁺ release. •Bicarbonate release was 15.4 ± 9.9 mmol when equilibrating at $[HCO_3^{-}]$ 25mM (3 units). •Glucose was removed primarily by saturable adsorption to activated carbon occurring within 60 min $(21.1 \pm 4.5 \text{ mmol in})$

-Polystyrene-divinylbenzene (90 g) for K⁺ removal

-FeOOH (30 g) for PO₄³⁻ removal

- -10 graphite electrodes (70 g, cumulative surface 585 cm²); 3A with activated carbon (AC) (50 g) for organic waste removal (i.e. urea and creatinine)
- •The sorption/EO unit was equilibrated with NaCl 95 mM, NaHCO₃ 25 mM, CaCl₂ 1.2 mM, MgCl₂ 0.45 mM. •Every 30 min electrode polarity was inversed to avoid deposition.
- •To simulate replenishment from the plasma compartment (in vivo) the estimated amount of removed urea, creatinine, K⁺ and/ PO_4^{3-} was added to the reservoir at 60 and 120 min.

Contact: K.G.F.Gerritsen@umcutrecht.nl

the 1st hour vs. 0.5 ± 1.1 mmol in the 3rd hour, p=0.01) •Chlorine levels below maximum acceptable levels (AAMI standard)

•Ammonia/-um release: 0.016 ± 0.05 mole / mole of urea

- Relevant removal of urea, creatinine, K^+ and PO_4^{3-} without Ca²⁺, Mg²⁺, HCO₃⁻ adsorption or Na⁺ release.
- For application as a bedside device (8 hours/day) + 1 exchange per day, creatinine removal is sufficient with 3 sorption/EO units. Removal of urea needs to be increased with ~50% and that of potassium and phosphate with ~25%.
- Chlorine release complies with AAMI standards.
- Higher dialysate flow did not increase toxin removal.
- Slight ammonia/-um generation due to hydrolysis of urea.