on

Roszkowska-Chojecka Malwina Monika, Dobrowolski Leszek

Department of Renal & Body Fluid Physiology,

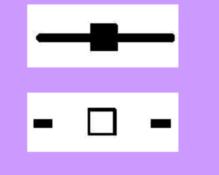
M. Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland

Background

P2 purinergic receptors (P2R-Y and P2R-X families) are expressed kidney vessels and tubules, however, the role either in physiological and pathological states, remains unclear. There is only a few data based on the in vivo studies

This whole-kidney study is focused on the renal function in response to ADP, a non-selective agonist of P2R-Y.

Aim of the study


Could P2Y-R stimulation modify the intrarenal blood circulation and renal excretion in normotensive rats?

Materials and methods

■ Acute experiments with male Sprague-Dawley rats

Group	BW	with ADP in
ADP	313±8 g	or its solven
Solvent	319±11 g	

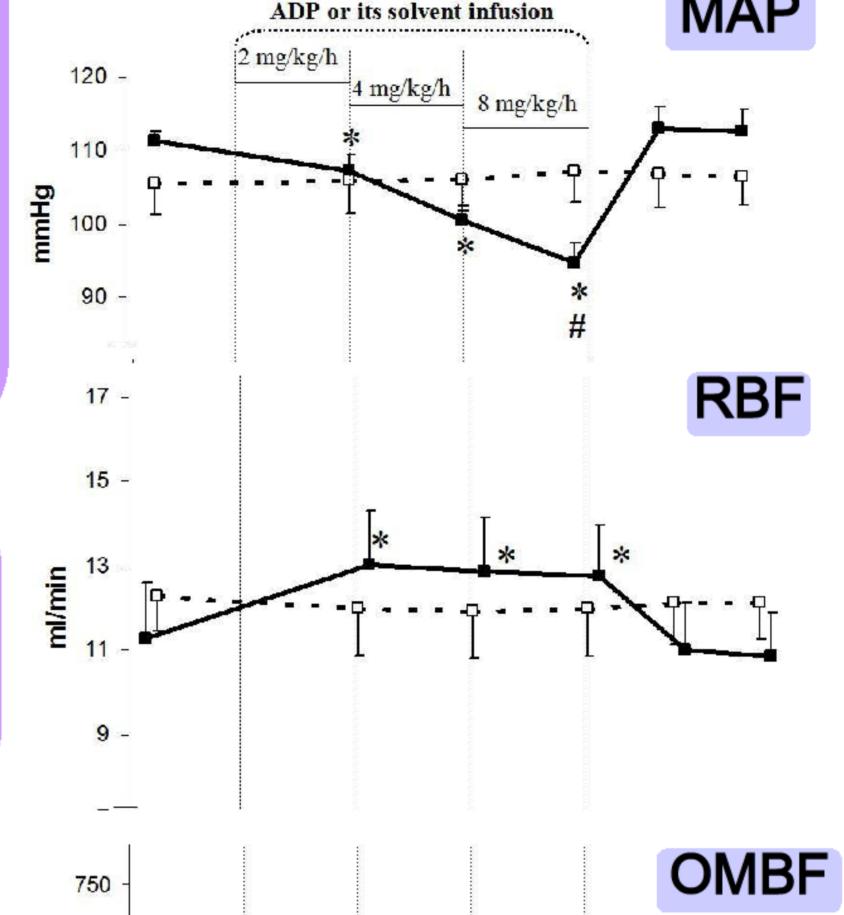
fusion (n=9)nt (saline) (n=7)

- Anaesthesia: sodium thiopental, 100 mg/kg BW i.p
- Measurements:
- MAP mean arterial pressure and heart rates, femoral artery cannula; pressure transducer (Stoelting);
- RBF whole kidney blood flow, by flow probe placed on renal artery (Transonic TS420 flowmeter);
- Renal regional blood perfusion: determined using laser-Doppler probes placed on the kidney surface or inserted into respective zones of the medulla

CBF – cortical-, OMBF and IMBF - outer- and innerblood flow medullary

Renal excretion:

Urine flow (V), sodium ($U_{Na}V$), potassium and total solute **excretion** (*UosmV*) - calculated per gram of the kidney.

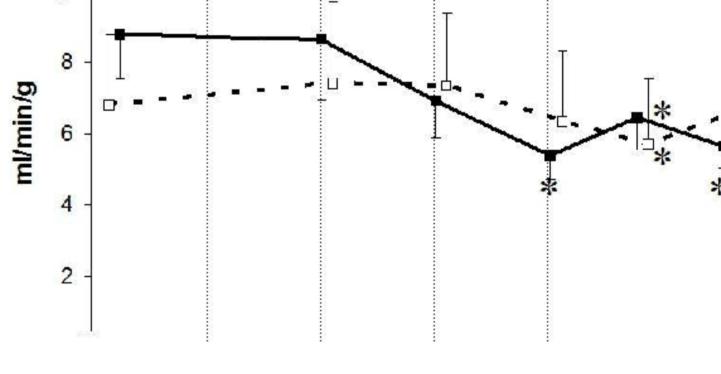

- Protocol of acute experiments:
- Arterial pressure, renal haemodynamics and excretion were measured simultaneously.
- After control period (C) the drug solvent i.v. infusion was replaced three subsequent doses (2, 4, 8 mg/kg/h) of ADP, later replaced by solvent again - recovery period (R).

Conclusions

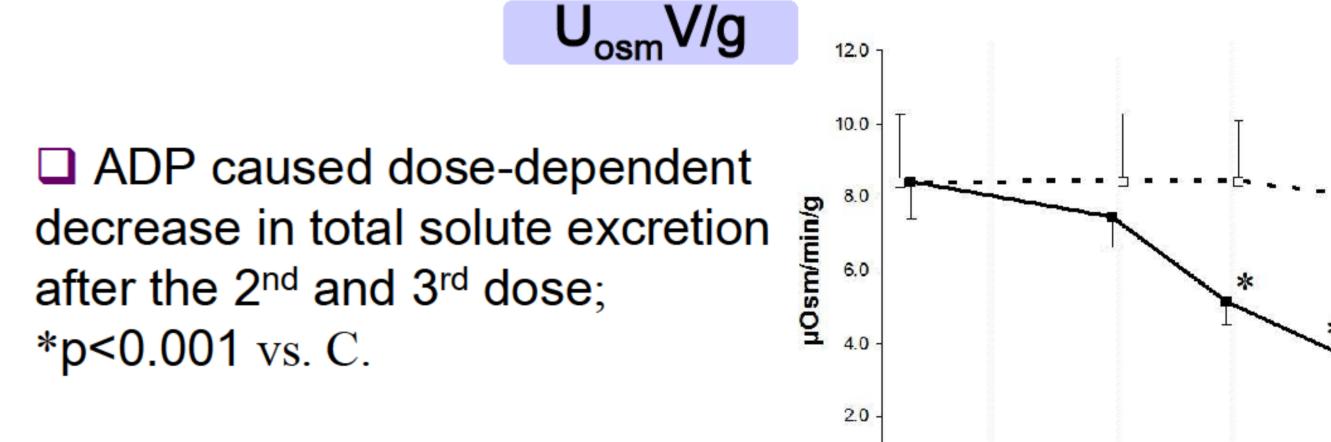
Stimulation of P2R-Y in the kidney:

- modulates blood perfusion of the deep cortex (as indicated by comparison of changes in RBF with lack of changes in CBF);
- possibly, vasodilatatory action of the P2R in outermedullary circulation keeps the perfusion of this zone stable despite the changes in arterial blood pressure;
- stimulates tubular water solute transport and independently of the changes in renal haemodynamics; reduces the urine concentration ability.

Results


- ADP induced a dose-dependent decrease; MAP returned rapidly to the control value in R;
- *p<0.05 or less vs. C, #p < 0.05 between groups
- increased with the lowest dose of ADP and remained elevated througout drug infusion periods; *p<0.02 vs. C.

#p < 0.05 between groups


- was not affected by ADP but decreased in recovery period ₹ 450 by 10%; 300 *p<0.01 vs. C. 150
 - □ CBF increased by 10% after the lowest dose of ADP (p<0.04) and declined slightly after the second dose to the value not different from
 - ☐ IMBF remained stable throughout the experiment, similarly as in the control group.

V/g

☐ There was a small, persistent drop induced by the highest dose of ADP; *p<0.02 vs. C.

 $U_{Na}V/g$ 3.0 ☐ There was a distinct decrease in sodium excretion; *p<0.02 vs. C. 1.0 0.5

SEM All values are means *p<0.02 vs. C.

Hypertension - experimental models

The study was partially supported by the National Science Centre, Poland, project No. 6442/B/P01/2011/40

