SHORT TERM VARIABILITY OF AMBULATORY BLOOD PRESSURE DOES NOT PREDICT CARDIOVASCULAR OUTCOME IN NON-DIALYSIS CKD PATIENTS

Roberto Minutolo¹, Giovanna Stanzione¹, Giovanni Tripepi², Graziella D'Arrigo², Silvio Borrelli¹, Carlo Garofalo¹, Michele Provenzano¹, Francesca Mallamaci², Giuseppe Conte¹, Carmine Zoccali², Luca De Nicola¹

¹Nephrology, Second University of Naples, Naples, ²CNR-IBIM, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy

INTRODUCTION	METHODS	
 Ambulatory blood pressure monitoring (ABPM) is considered the gold standard for assessment of hypertension burden in non- dialysis chronic kidney disease (ND-CKD) because of closer correlation with cardiac 	 ENROLLMENT PERIOD: Jan 2001 to Dec 2011 INCLUSION CRITERIA: Consecutive patients with diagnosis of CKD Regular nephrology care from ≥6 months Available ABPM (Spacelab 90207) 	ABP MONITORING ABPM was obtained on a workday and under regular antihypertensive treatment. ABP frequency was every 15 minutes from 7:00 AM to 11:00 PM and every 30 minutes from

- organ damage and better prediction of adverse outcome than office BP [1].
- In essential hypertension, day-by-day ABPM variability (ABPV) has been recently demonstrated to further improving cardiovascular (CV) risk stratification [2,3]; however, whether this holds true also in patients with CKD remains unknown.
- This multicenter prospective study was aimed at evaluating prognostic role of ABPM variability on CV outcome in ND-CKD.

Available Abi wi (Spacelab 50207)

EXCLUSION CRITERIA:

- Acute kidney injury in the previous 3 mos
- Active malignancy
- Advanced liver disease
- atrial fibrillation;
- Steroid or immunosuppressive therapy
- inadequate ABPM (<20 and <7 day/night recordings).

11:00 PM to 7:00 AM. Daytime and nighttime periods were derived from the patient's diary **ABPV EVALUATION:**

ABPV was the weighted standard deviation (SD) of 24-hour systolic blood pressure (SBP) (WSD 24hSBP), calculated according to the following formula (4):

[(Sd_{daytime} x hrs_{daytime}) + (SD_{daytime} x hrs_{daytime})]/24

COMPOSITE ENDPOINT:CV deaths and non fatal events (myocardial infarction, stroke, congestive heart failure, cardiac or peripheral revascularization, non-thraumatic amputations)

RESULTS

TABLE 1. Clinical characteristics of the 444 patients enrolled.

DEMOGRAPHIC AND CLINICAL	
Age (years)	63.1±14.3
Males (%)	57.4

TABLE 2. Linear regression analysis estimating factors associated with ABP variability.

Variables	β Coefficient	Ρ
Age (years)	0.061	<0.001
History of CVD (yes vs no)	0.604	0.046
Proteinuria (g/day)	-0.238	0.017
24h SBP (mmHg)	0.064	<0.001
Non-dipping status (yes vs no)	-0.870	0.001
Number of antihypertensives	0.367	<0.001

BMI (kg/m ²)	29.1±5.3
Smoking (%)	25.7
Diabetes (%)	34.0
History of CVD (%)	28.6
CKD Stage 1-2 (%) CKD Stage 3 (%) CKD Stage 4 (%) CKD Stage 5 (%)	23.2 49.3 21.4 6.1
GFR (mL/min/1.73 m^2)	45.0±20.6
Proteinuria (g/day)	0.24 [0.08-0.92]
Hemoglobin (g/dL)	12.9±1.8
Total cholesterol (mg/dL)	189±37
BLOOD PRESSURE	
Office SBP/DBP (mmHg)	145±19/81±12
Office BP <140/90 mmHg (%)	32.2
24h SBP/DBP (mmHg)	126±16/72±10
24h BP <130/80 mmHg (%)	51.8
Daytime SBP/DBP (mmHg)	129±17/75±11
Daytime BP <135/85 mmHg (%)	56.8
Nighttime SBP/DBP (mmHg)	120±19/66±11
Nighttime BP <120/70 mmHg (%)	42.8

*Model summary: R*²*=*0*.*362*, P<*0*.*001*.*

Model adjusted also for gender, BMI, smoking, diabetes, Hb, GFR, Office SBP

TABLE 3. Cox regression analysis estimating the risk for CV event associated with ABP variability. Median follow-up: 4.8 years (IQR 2.4-7.6).

	Unadjusted HR [95%CI]	Model 1 HR [95%CI]	Model 2 HR [95%CI]
CV Outcome (n=116)			
ABP Variability (5 mmHg)	2.03 [1.58-2.60]	1.18 [0.88-1.59]	1.06 [0.77-1.46]
24h SBP (5 mmHg)	1.15 [1.09-1.21]	1.08 [1.01-1.15]	1.08 [1.01-1.15]

Model 1 adjusted for age, gender, BMI, smoking, history of CV disease, diabetes, cholesterol, Hb, GFR, proteinuria, office SBP; Model 2 adjusted for model 1 variables + ABP variability and 24hSBP

ANTIHYPERTENSIVE TREATMENT

Number of drugs	2 [1-3]
RAS inhibitors (%)	79.7
Calcium channel blockers (%)	44.8
Beta-blockers (%)	35.6
Furosemide(%)	29.5

Likelihood ratio test confirmed the greater predictive role of the 24hSBP; specifically, adding the 24hSBP to the WSD 24hSBP increased the model fit for the CV endpoint (P=0.033) while the model fit did not improve when the ABP variability was added to the 24h SBP (P=0.81).

CONCLUSIONS

This study provides evidence that 24h SBP is superior to day-by-day ABP variability (WSD 24hSBP) in predicting cardiovascular outcome in ND-CKD. The value of this finding grows when considering that 24h SBP is immediately accessible to clinical nephrologists.

REFERENCES:

- 1. Minutolo R, Agarwal R, Borrelli S et al. Prognostic role of ambulatory blood pressure measurement in patient with nondialysis chronic kidney disease. Arch Intern Med. 2011;171(12):1090-8.
- 2. Yi Zhang et al. Effect of antihypertensive agents on blood pressure variability. Hypertension, 2011; 58:155-160.
- 3. Schillaci G et all. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension, 2012; 60:369-377.
- 4. Hansen TW et al. Prognostic value of reading-to-reading blood pressure variability over 24 hours in 8938 subjects from 11 populations. Hypertension. 2010;55:1049-1057

