STUDY OF ASSOCIATION OF ANGIOTENSIN CONVERTING ENZYME GENE POLYMORPHISMS AND TARGET ORGAN DAMAGE IN TYPE 2 DIABETES MELLITUS

प्रज्ञान ब्रह्म Manipal INSPIRED BY LIFE

Joydeep Chakraborty¹, Ravindra Prabhu¹, Shankar P Nagaraju¹, Manohar Bairy¹, K Satyamoorthy², Srinivas Kosuru¹, Rajeevalochana Parthasarathy¹ 1 Department of Nephrology, Kasturba Medical College, Manipal, Manipal University ,India, 2 School of Life Sciences, Manipal University, Manipal, India

Introduction¹⁻³

- ➤ Insertion/Deletion polymorphisms of angiotensin converting enzyme (ACE) gene are associated with ACE levels.
- ➤ They are associated with coronary disease risk but their association with development of Diabetic nephropathy and its progression and other target organ involvement has been conflicting among different studies.

Objective

To study the distribution and association of ACE gene polymorphisms with nephropathy, its progression and other organ involvement in type 2 Diabetes mellitus in our population.

Methodology

Study Design: Prospective Observational

Study duration Recruitment 6 months, Follow up

minimum 12 months

Study site: Department of Nephrology, Kasturba

Hospital, Manipal **Study subjects**:

Inclusion criteria:

- ➤ Adult type 2 diabetes mellitus of at least 5 years duration .
- Adult type 2 Diabetes mellitus of any duration with clinical or histologically proven nephropathy, retinopathy

Exclusion criteria:

➤ Adult type 2 Diabetes mellitus of < than 5 years duration with no nephropathy or retinopathy or having non diabetic renal disease

Data Collection: ACE gene polymorphism was analyzed in blood by DNA extraction, polymerase chain reaction, restriction fragment length polymorphism & DNA sequencing.

- ➤ Clinical, demographic, lab data from case records

 Data Analysis: On SPSS version 15
- Pearson's chi square test for categorical & one way Anova for continuous variables

Results & Discussion

Table 1: Demography

Number	130			
Males	103 (79 %)			
Mean age (years) 53.9 ± 9				
Mean GFR	53.88 ml/min/1.73 m ²			
Follow up				
Number	69			
Duration (months) 28.5 (12 to 44				

Table 2: Distribution of ACE gene polymorphisms

ACE gene polymorphisms	Number (%)
D/D	16 (12.3 %)
I/D	76 (58.5%)
I/I	38 (29.2 %)

Distribution of ACE gene polymorphisms

Table 3: Distribution of complications in type 2 Diabetes mellitus among ACE gene polymorphisms

	Number	ACE D/D	ACE I/D	ACE I/I	
Complications	(%)	N = 16	N = 76	N = 38	p value
Retinopathy	102(78.5)	14	58	30	0.61
Hypertension	101 (77.7)	15	65	31	0.51
Neuropathy	35 (26.9)	5	22	8	0.61
Proteinuria	91 (70)	15	53	23	0.30
Total Cholesterol (mg /dl)		168.16 ± 82	162.3 ± 47	178.6 ± 47	0.41
Triglycerides (mg/dl)		134.5 ± 54	190.7 ± 23	179.57 ± 29	0.80
HDL Cholesterol (mg/dl)		35.5 ± 12	35.37 ± 10	31.57 ± 12	0.40
Non HDL Cholesterol (mg/dl)		109.83 ± 59	126.06 ± 51	138.63 ± 40	0.41
LDL Cholesterol (mg/dl)		87.56 ± 50.4	90.68 ± 36.15	97.65 ± 35.2	0.75
Ischemic heart disease	31 (23.8)	5	16	10	0.62
Systolic dysfunction	25 (19.2)	4	13	8	0.69
Diastolic dysfunction	59 (45.4)	7	37	15	0.64
Left ventricular hypertrophy	86 (66.2)	12	49	25	0.72
Ejection fraction (%)		63 ± 10	66 ± 8	66 ± 9	0.51

Table 4: Average fall in GFR in ml/min/month (N= 69)

ACE D/D (N = 7)	ACE I/D (N = 42)	ACE I/I (N = 20)	p value
0.4 (0 to 0.7)	0.4 (0 to 0.8)	0.2 (0 to 1.2)	0.96

Conclusion

- ➤ I/D ACE gene polymorphism is present most frequently in our population of Type 2 Diabetes mellitus.
- ACE gene polymorphisms do not influence presence of hypertension, proteinuria, retinopathy, dyslipidemia, heart disease, neuropathy or progression of nephropathy.

References

- Chaoxin J, Daili S, Yanxin H, Ruwei G, Chenlong W, Yaobin T The influence of angiotensin-converting enzyme gene polymorphisms on type 2 diabetes mellitus and coronary heart disease Eur Rev Med Pharmacol Sci. 2013 Oct;17(19):2654-9.
- Ng DP, Tai BC, Koh D, Tan KW, Chia KS, Angiotensin-I converting enzyme insertion/deletion polymorphism and its association with diabetic nephropathy: a meta-analysis of studies reported between 1994 and 2004 and comprising 14,727 subjects. Diabetologia. 2005 May;48(5):1008-16.
- 3. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels J Clin Invest. 1990 Oct;86(4):1343-6.

