

CHRONIC KIDNEY DISEASE DISTURBS CARDIAC CALCIUM HANDLING DUE TO HIGH FGF23 LEVELS

<u>M Verkaik^{1,2}, M Oranje², Z Gam², D Abdurrachim³, JJ Prompers³, A Najafi², DW Kuster²,</u> MAS AI Sharkawy², M Helmes², PM ter Wee¹, J van der Velden², EC Eringa², MG Vervloet¹ On behalf of the NIGRAM consortium

¹Dept. of Nephrology and ²Dept. of Physiology, ICaR-VU, VU University Medical Centre, Amsterdam, The Netherlands, ³Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Introduction

- Cardiovascular causes account for approximately 50% of mortality in patients with chronic kidney disease (CKD).
- The molecular changes that may underlie the increased

Methods

- Seven weeks old male wild type C57BI/6J mice were subjected to partial nephrectomy (5/6Nx) or sham-surgery and were kept in the study for six weeks.
- A second non-CKD group received either PBS or FGF23 i.p. injections for 7 consecutive days twice daily.

prevalence of heart failure and cardiac mortality in CKD are illdefined.

Hypothesis

- We hypothesized that CKD directly impairs cardiac diastolic and systolic function due to FGF23-induced disturbances of calcium fluxes across the myocellular sarcoplasmic reticulum.
- In vivo cardiac function was assessed using Cine MRI •
- In single intact cardiomyocytes ex vivo diastolic and systolic function, as well as intracellular calcium transients were measured by fura-2 loaded cardiomyocytes.
- mRNA expression of α -myosin heavy chain (α -MHC), β -myosin heavy chain (β -MHC) and atrial natriuretic factor (ANF) was determined by qPCR. Protein expression of total and phosphorylated phospholamban was quantified by Western blot.

Results

Table 1. 5/6Nx impairs kidney function and increases plasma FGF23 levels.

	Sham	5/6Nx	p-value
Plasma urea (mmol/L)	12.7 ± 0.3	22.1 ± 1.1	<0.001
Plasma creatinine (µmol/L)	15.0 ± 1.5	28.3 ± 1.6	<0.001
Urinary creatinine (µmol/24h)	2.62 ± 0.23	3.33 ± 0.15	0.021
Creatinine clearance (µl/min)	137.1 ± 20.4	92.8 ± 6.0	0.060
Plasma Ca ²⁺ (mmol/L)	2.00 ± 0.02	2.17 ± 0.03	0.001
Urinary Ca ²⁺ (µmol/24h)	1.07 ± 0.21	3.55 ± 0.31	<0.001
Plasma Pi (mmol/L)	3.37 ± 0.19	2.93 ± 0.12	0.088
Urinary Pi (µmol/24h)	19.2 ± 2.8	115.0 ± 18.4	<0.001
Fractional excretion phosphate (FEP) (%)	2.95 ± 0.92	17.01 ± 2.87	0.003
Plasma c-term FGF23 (pg/ml)	210.2 ± 13.1	315.2 ± 27.6	0.002
Plasma PTH (pg/ml)	255.6 ± 51.8	555.4 ± 83.8	0.014
Plasma 1,25-dihydroxyvitamin D ₃ (pmol/L)	226.8 ± 10.2	252.6 ± 23.5	0.317

Figure 2. 5/6Nx and FGF23 injections do not induce left ventricular hypertrophy (LVH).

Data are mean \pm SEM

Figure 1. 5/6Nx impairs calcium fluxes in cardiomyocytes, which is mimicked by increasing circulating FGF23 levels.

B

Α

NIGRAM

CONSORTIUM

SD

DUTCH KIDNEY FOUNDATION

Systolic Sarcomere Length

Table 2. Experimental renal failure does not induce impaired cardiac function measured by MRI.

	Sham	5/6Nx	p-value
Cardiac output (L/min)	4.80 ± 0.39	4.76 ± 0.25	0.886
Ejection fraction (%)	73.3 ± 1.6	72.4 ± 0.9	0.886
Stroke volume (µI)	43.9 ± 2.6	43.5 ± 1.9	1.000
End-systolic volume (µl)	16.4 ± 2.1	16.7 ± 1.1	0.886
End-diastolic volume (µ)	60.2 ± 4.6	60.2 ± 2.9	0.886
E/A ratio	1.39 ± 0.26	1.79 ± 0.20	0.182
Left ventricular mass (mg)	90.2 ± 3.3	91.54 ± 2.9	0.886

Data are mean \pm SEM.

Figure 3. Gene expression markers of LVH are not
altered after 5/6Nx and FGF23 injections.

Sham surgery
5/6Nx surgery
PBS i.p. injections
ECE23 in injections

1.5-1.0

Conclusions

- Chronic kidney disease disturbs cardiac calcium handling which can be explained by high FGF23 levels.
- These myocellular abnormalities precede the functional and structural cardiac abnormalities seen in longer-lasting CKD.
- FGF23 thus may serve as a new target to prevent CKDrelated heart failure.

Data are mean \pm SEM. *: p<0.05, ***: p<0.001 vs. sham or PBS.

Chronic Kidney Disease. Bone disease.

Melissa Verkaik

DOI: 10.3252/pso.eu.53era.2016

