EGR-1 AND EGR-2 IN MYOCARDIAL FIBROSIS OF TGF-B TRANSGENIC MICE AND THEIR ASSOCIATION WITH TIMP-1

Gábor Kökény, Martina Böősi, Krisztina Fazekas, László Rosivall, Miklós M. Mózes

Institute of Pathophysiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary E-mail: kokeny.gabor@med.semmelweis-univ.hu

Recently we found strong association between cardiac TIMP-1 expression and the severity of myocardial fibrosis in TGF-ß1 transgenic mice on different genetic backgrounds (B6 and CBAxB6 F1)1. Fibrosis is usually charaterized by increased expression of the tissue inhibitors of matrix metalloproteinases (TIMPs).

Early growth response factors (EGRs), a family of transcription factors have been associated with TGF-ß induced activation of fibroblasts and regulation of collagen synthesis^{2,3}. However, their role in cardiac fibrosis or their association with TIMP-1 is still unknown.

In the present study, we aimed to investigate the strain dependent molecular regulation of cardiac TIMP-1 and its association profibrotic transcription factors EGR1 EGR2.

Cardiac gene expression

Despite the comparable elevated plasma TGFß1 levels in both transgenic strains, the cardiac mRNA expression of collagen-1, TIMP-1, EGR-1 and EGR-2 were elevated only in CBAxB6-TGFß transgenic mice.

EGR immunostaining

According to gene expression data, CBAxB6-TGFß mice depicted increased number of EGR-1 and EGR-2 positive cardiac cells.

EGR-1 immunostaining (red nuclei)

200x and 600x magnification

METHODS

Animal model:

Male B6-TGFß and CBAxB6-TGFß transgenic mice were generated as previously described 4,5

Experimental groups:

TGF-ß1 transgenic mouse strains and wild type control strains were used as follows:

- 1) B6-TGFß (n=8)
- 2) CBAxB6-TGFß F1 (n=9)
- 3) B6 (n=6)
- 4) CBAxB6 F1 (n=6)

Cardiac samples of 14-days old male mice were analyzed for mRNA and protein expression. Circulating TGF-ß1 levels were analyzed in plasma samples.

Ingenuity Pathway Analysis (IPA) Molecule Activity Predictor module was used expression data to construct the proposed pathway.

Statistical analysis:

Data are presented as mean+SD. ANOVA and and Kruskal-Wallis test were performed.

TIMP-1 mRNA p<0.01

EGR-2 immunostaining (red nuclei)

200x magnification

EGR-1 mRNA

Proposed pathway

RESULTS

14--MP

Plasma TGF-ß1 levels

transgenic strains had elevated circulating TGF-ß1 levels, as compared to wild type controls.

CONCLUSION

Our results suggest EGR-2 might contribute to the development of TGF-ß induced myocardial fibrosis. We suggest that EGR-1 and EGR-2 might contribute to the strain dependent regulation of TIMP-1 expression in this model.

ACKNOWLEDGEMENTS

The technical assistance of Magdolna Pekár Dept. of Pathology) greatly acknowledged.

REFERENCES

- 1) Kokeny et al, Nephrol Dial Transplant. 2012, 27 (S2); ii328
- 2) Chen SJ et al. J Biol Chem 2006;281:21183-97
- 3) Wu M et al. Am J Pathol 2009;175:1041-55
- 4) Sanderson et al, PNAS, 1995; 92:2572

