INFLUENCE OF INSULIN IN THE GENE EXPRESSION OF RAS COMPONENTS OF THE PODOCYTE IN A DIABETIC SITUATION

Eva Márquez, Marta Riera, Julio Pascual, María José Soler Kidney Disease Research Group, Nephrology Department, Hospital del Mar- IMIM. Barcelona, Spain

Introduction

- Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in our environment.
- Renin-Angiotensin System (RAS) blockade has been shown to delay the progression of chronic kidney disease and specifically in DN.
- The podocytes are key cells involved in the development of albuminuria with a functionally active local RAS and insulin receptors.
- In the diabetic milieu, podocytes are influenced by circulating RAS and remarkable by its own RAS activation. Figure 1

Figure 1. RAS system within the podocyte

Figure 2 B. Cells on 14th day of differentiation

Figure 2 A. Cells growing. Permissive conditions

Figure 2 C. Cells on 14th day of differentiation

Aim

Study the effect of long term insulin incubation in several RAS components gene expression in podocytes in high glucose media after insulin and/or albumin incubation, mimicking diabetes situation.

Materials and Methods

Cell Culture

- Conditionally immortalized mouse podocyte cell line.
- Proliferated in permissive conditions (mouse γ-interferon, 32°C) for 3-5 days (Figure 2a). Induced to differentiate for 14 days in nonpermissive conditions (37°C and removing γ-interferon). Figure 2b/2c.
- Incubation for 48 hours in high glucose media (25nM) with insulin (200nM; PODi), albumin (10mg/ml; PODa) or both (PODai). There was a control group without intervention (PODc). Each group with an n=8.

Gene expression studies

- RAS elements studied: Angiotensinogen (Agt), Angiotensin converting enzyme (ACE), Angiotensin converting enzyme 2 (ACE2) and angiotensin receptors AT1 and AT2 (AT1-R, AT2-R).
- Total RNA extraction → Reverse transcription → qPCR.
- β-actin was used as housekeeping gene. Results were expressed in Ratio gene/β-actin

Results

Figure 3. Agt gene expression

Figure 4. AT1-R gene expression

Figure 5. AT2-R gene expression

Figure 6. ACE gene expression

Figure 7. ACE2 gene expression

Figure 8. The balance in RAS enzymes: Index ACE/ACE2 gene expression

*p<0.05 vs PODc; \$p<0.05 vs PODi.

Conclusions

- Podocytes react in a diabetic milieu modifying their RAS gene expression profile.
- Insulin favors an "anti-Angiotensin II" gene expression profile, but is not capable of reversing the "pro-Angiotensin II" effect caused by the presence of albumin.

References

- Pavenstadt al. *Physiol* Rev. 2003 Η et Jan;83(1):253-307.
- Shankland SJ et al. KI 72, 26-36 July (1) 2007.
- Liebau MC et al. Am J Physiol Renal Physiol. 2006 Mar;290(3):F710-9.
- Velez JC et al. Am J Physiol Renal Physiol. 2007 Jul;293(1):F398-407.
- Diabetes. 2005 et al. Nov;54(11):3095-102.

