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/Backgro und "\ [ Results
Large scale molecular characterization of acute renal allograft injury is The systematic literature search for human omics studies revealed 4 studies from the
essentially based on transcriptomics data with rather weak test renal-TX setting (1 SNP, 3 transcriptomics) and 14 studies from the ICU setting (3
characteristics of diagnostic or predictive markers. Therefore, the integration SNPs, 2 metabolomics, 8 proteomics, 1 mIRNA) complemented with one miRNA data
of multi-omics levels (genetic predisposition, protein coding and non-coding set from our group (Table 1).
transcripts, as well as proteomics and metabolomics signatures) appears a 3 | | | |
promising strategy to study such complex phenomena like acute kidney injury Table 1. Identified omics studies relevant in the context Table ‘2. AKI biomarker
. : : of AKI candidate list
(AKI), and to cover and classify the heterogeneous pathophysiology with a
: : Text- manual biomarker
\multl-marker profile. / level paper source  outcome #ofgenes  imose mining search candidates
SNPs Israni, 2008 donor AKI after TX 1 early X X FABP1. IL18, IL8
// \ SNPs Alam, 2010 - AKIN = stage 1 1 AP, "f-GT, m-GST.
Methods SNPs Haase-F., 2009 - AKIN = stage 1 1 early X ESF?‘M' LDH, Pro-
_ _ _ _ _ _ _ SNPs Isbir, 2007 - AKIN = stage 1 2 diagnostic X NHE3
We studied this enigma by incorporating a broad range of publicly available S S 201 AKIN® stage 1 140 (8 metabolites)

_ _ _ _ _ metabolomics un, serum = stage metabolites i CRP IL6
omics data for the analysis of AKI with focus on early diagnosis. We | | ~ prognesie X " |
conducted a systematic literature search for AKI omics studies by using two metabolomies - Beger 208 wne - AXINEs@ge T SIMEERONE) - gnostic . micralapuii
sample sources: AKI in the ICU (proteomics, metabolomics) and AKI after Proteomics Ho, 2009 & 2011 Urine AKIN = stage 1 3 GGT, IL10, RBP
renal transplantation (MRNA/mMiRNA). Despite the multifactorial causes for the proteomics Devarajan, 2010  Urine AKIN = stage 1 3 diaza.:géﬁc x  GST, MMP9, NAG
dt.a\{elopmept of AKI '[hE": d!agnoas IS malnly based on creatinine in both Sroteomics Bennett 2008 urine AKIN = stage - 1 ea . GST
clinical settings (AKIN criteria 2 Stage 1 in the ICU or the need of more than | | Prog

: : proteomics Aregger, 2010 urine AKIN = stage 1 3 diagnostic _ _
one dialysis after renal-TX). Srognostic X a-1microglobulin
We used a hybrid molecular interaction network covering about 15,000 proteomics Zhou, 2006 urine AKIN = stage 1 1
molecular features from the human protein coding gene set, and holding proteomics Metzger, 2010 urine AKIN = stage 1 6 dia‘;?;ﬁc y ) thjtf?gfvgg?}
about 800,000 molecular relations covering experimental as well as predicted proteomics Varghese, 2010 urine AKIN = stage 1 2 prognostic NGAL (LCN2)
mteractlo_n_s for integrating the given cross—gmlcs_dgta sets (Figure 1). This wanscriptomics  Hauser. 2004 Ohbiopsy  AKI after TX A5 coLs cold
AKl-specific network was then segmented into distinct molecular segments oo . i aor T s CX3CL1,
(processes) apparently relevant in AKI pathology, in their entirety providing us ransEIpomES - TS, opsy ARETE ' X A
with a molecular model of the clinical phenotype (Figure 2). transcriptomics  Perco, 2009 Ohbiopsy Al after TX 29 IGF1, VCAM!

mMiRNA personal data Oh biopsy  AKI after TX 39 (10 miRNAS) red = prominent biomarker candidates
miRNA Lorenzen, 2011  plasma AKIN = stage 1 79 (13 miRNAs)
- I %‘& b) :fe”et“l AKI specific subgraphs derived from integrating AKI associated molecular features from
_1__1 1 ? " ‘ physical the different omics levels on the relations network are shown in Figure 3A. Based on
» the disease specific subgraph, biological networks (units; highly connected protein
1 9 : coding gene nodes based on the hybrid relation network) were identified and are
., > 1@ = represented in Figure 3B. We Interpret each unit as a distinct molecular aspect
i & *f-’%ﬁ,ﬁ.r ®)c) [function (process) being relevant in AKI.
R disea‘f’*et_ We further evaluated which units are addressed by currently discussed biomarker
, 4 dSS0Clatlon . . . . . .
B drug candidates. AKI biomarker candidates were derived from text mining and a manual
Ll } - association literature search (Table 2). IL6 is a member of unit-3. All other biomarkers are not in the
PO bl‘?zlarker consolidated omics feature list, and not in any of the identified units. To address this
eviaence . . . . . .
Issue, we calculated the connectivity scores of the biomarker candidates to the units.
Figure 1. Composition of the hybrid relations network. a) Relevant information on Biomarkers with at least one direct edge to one of the units are shown in Table 3.
molecular features, their interaction and their drugs/targets and associated diseases Additionally, prominent biomarker candidates were drawn in Figure 3B to illustrate the
were combined. b) Edges re_present the availalqle Interaction source and c) Nodes distance to the units.
encode the human protein coding gene space holding further annotation (1).
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e . o ® Figure 3B O unit7 Figure 3. (A) Hybrid molecular interaction
. 5 genes network subgraph of AKI: a) metabolomics, b)
Figure 2. Generating a disease (AKI) specific subgraph. a) identification of human AKI | adding proteomics, c) adding miRNA targets, d)
Omics studies, b) identification of AKI associated features ¢) mapping the signature on P ?hded;:ﬁ 212?&?1:; ﬁj&g?kSﬂ';f’:ﬁgi?étzaﬁtfiﬂ
the hybrid network, d) extracting the disease specific subgraph (1). . ® unit (according to the profiling experiments, Table 1)
unit-2 . HavER1 "
19 genes \// 1 5 genes were removed.
\ / \ P ® (B) Functional units derived from the AKI
BN . _— unit-5 subgraph given in (A,e). A segmentation algorithm
Q oty 5 genes selects groups of nodes with strong associations
/ \ ! | u © .9 from the AKI subgraph and forms units. Unit size
7 o . correlate with number of nodes, and weighted
CO”CIUS!O” _ unit4 L | edges between units indicates their level of
unite  ogenes .. connectivity. The unit given in red holds a
- - - 4 genes b biomarker candidate (IL6) already discussed in
We Integrated human cross-omics data to elucidate ikt the context of AKI. Color code of nodes within
novel AKI biomarkers. Molecular clusters of candidates unit8 & units indicates the omics level: green - mRNA,
_ . _ _ 3 genes yellow - miRNA targets, pink — SNPs
could be Iidentified with each holding several novel
targets.
Table 3. marker unit-1 unit-2 unit-3 unit-4  marker unit-1 unit-2 unit-3 unit-4
_ _ Connectivity  1L10 5.4 (49%) 6.3(33%) 2.3(14%) 2.3(29%) GSTP1 2.6 (15%) 0.8 (10%)
Established AKI markers were found to be distant to the score of EGF 23(21%) 23(12%) 34(20%) 33(41%) NPPA  20(18%) 1.0(5%)
AKI network Suggesting Suboptimal classification. lemarker EPO 3.0(26%) 15(8%) 3.1(18%) 2.3 (28%) CXCL10 2.0 (11%)
candidates IGF1 2.4 (22%) 2.4 (12%) 2.6(15%) 1.5(19%) MMP9 1.0 (5%) 0.7 (4%)
CCL3 2.2(20%) 08(4%) 1.6(9%) 0.7(9%) IL18 15 (8%) 0.8 (5%)
CYBA 1.0 (9%) 0.7 (4%) FABP1 1.0 (13%)
Reference: VCAM1 20(18%) 1.0(5%) 1.0 (6%) RENBP 0.8 (5%)
(1) Mayer P et al. Systems Biology: Building a useful model from muiltiple markers and profiles. NDT 2012 Nov;27(11):3995-4002 LCN2 2.3 (12%) 1.5 (9%) CCL4 0.8 (5%)
IL8 0.8(7%) 2.0 (11%) 0.8 (9%) CX3CL1 0.7 (7%)
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