VITAMIN K₂ (MENAQUINONE) INTAKE AND ITS SERUM CONCENTRATION IN HAEMODIALYSIS PATIENTS Katarzyna Wyskida^{1,2}, Agnieszka Żak-Gołąb¹, Krzysztof Łabuzek³, Rafał Ficek², Kornel Pośpiech⁴, Magdalena Olszanecka-Glinianowicz⁵, Bogusław Okopień³, Andrzej Więcek², Jerzy Chudek¹ ¹Department of Pathophysiology; ²Department of Nephrology, Endocrinology and Metabolic Diseases; ³Department of Internal Medicine and Clinical Pharmacology; ⁴Dialysis Center in Tarnowskie Góry, Fresenius Nephrocare Poland; ⁵Health Promotion and Obesity Management Unit, Department of Pathophysiology Medical University of Silesia, Katowice, Poland ## **OBJECTIVES** Menaquinone-4 (MK-4) deficiency seems to be an important risk factor of vascular calcification in haemodialysis (HD) patients with chronic kidney disease, by diminished levels of calcium metabolism regulatory proteins. Optimal daily vitamin K₁ and K₂ intake as well as serum MK-4 level reference value in HD have not been determined, yet. # **METHODS** 85 HD patients (51 males) and 22 apparently healthy subjects (9 males) with normal kidney function (control group) were enrolled into this study. Serum MK-4 concentration was measured by HPLC (sensitivity 0.055 ng/mL) in addition to routine biochemical parameters. Daily vitamin K_1 and K_2 , micro- and macronutrients as well as energy intake were assessed on the basis of tree day food diary completed by patients. # AIM The aim of the present study is to asses assed serum MK-4 concentration in relation to daily vitamin K_1 and K_2 intake and their sources in HD patients. ### RESULTS Daily K_2 intake was significantly lower (by 29%) among HD patients, while K_1 consumption was similar in both groups. Daily K_2 intake in HD patients was significantly associated with fat and protein consumption (r=0.43, r=0.33, respectively). In HD serum MK-4 concentration was less frequently detectable (in 59% HD and 95% controls, p<0.001) and in those with detectable levels was lower than in the controls (by 42%). A correlation between serum MK-4 levels and mean daily K_2 consumption in HD patients (r=0.38) was weaker than in the controls (r=0.47). In multiple regression analysis the variability of serum MK-4 levels in HD patients were explained by daily K_2 intake (β =0.309). Table 1. Macro- and micronutrients, including K₁, K₂ vitamins intake in study participants (mean & 95% CI). Figure 2. The main dietary sources of K₂ in HD patients. Figure 1. Daily vitamin K₂ intake in hemodialysis patients and healthy controls. Figure 3: Serum MK-4 levels in hemodialysis patients (with detectable levels) and healthy controls. Figure 4: Correlation between daily vitamin K₂ intake and serum MK-4 levels. ### CONCLUSIONS Low vitamin K₂ consumption, mainly due to intake restrictions of meat, recommended for low phosphorous diet, is the most important cause of decreased serum MK-4 concentrations in HD patients.