Determinants of early changes in left ventricular systolic function in patients with essential hypertension and normal ejection fraction.

Evangelou D¹, Naka KK¹, Kalaitzidis R², Lakkas L¹, Bechlioulis A¹, Gkirdis I¹, Nakas G¹, Zarzoulas F², Kotsia A¹, Balafa O², Tzeltzes G¹, Pappas K¹, Katsouras CS¹, Dounousi E², Michalis LK¹,Siamopoulos KC²

Departments of ¹Cardiology and ²Nephrology, University Hospital of Ioannina, Ioannina, Greece

Objectives:

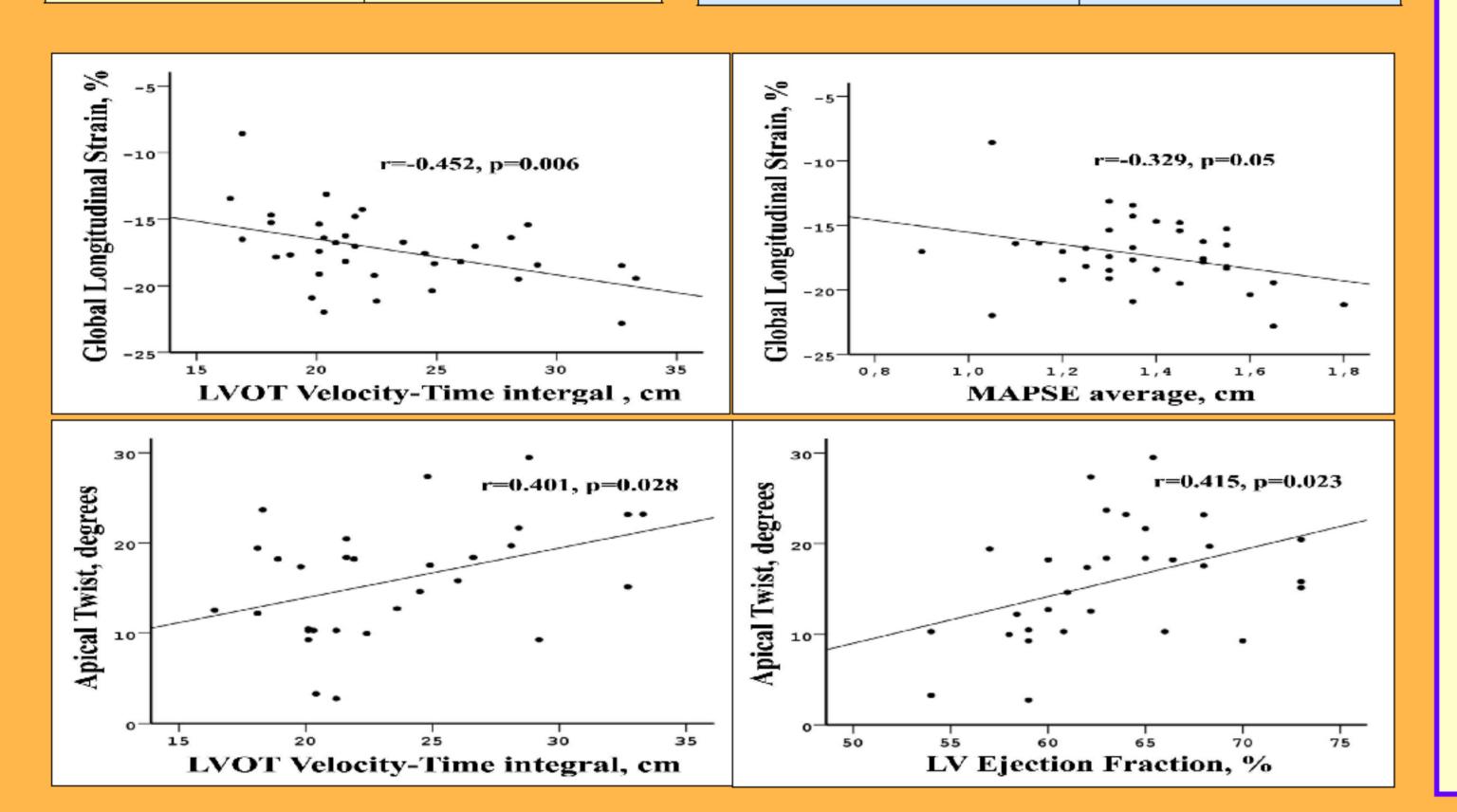
Hypertension has been associated with an early reduction in myocardial systolic function as assessed by indices of novel 2D speckle tracking (2DST) echocardiography even in the presence of normal ejection fraction (EF)

The aim of the study was to investigate the association of 2DSTE indices of longitudinal and rotational myocardial function with classical cardiovascular risk factors, arterial stiffness and coronary microvascular function in hypertensive patients with normal EF

Methods:

- Forty-one male patients (mean age 57±9 years) with normal EF and no left ventricular (LV) hypertrophy were enrolled
- Conventional, tissue Doppler (TD) and 2DST echocardiography were used to assess cardiac function
- Coronary flow reserve (CFR) in the left anterior descending artery using dipyridamole was assessed
- Arterial stiffness was assessed by measuring carotid femoral pulse wave velocity (PWVcf) and central augmentation index (Alx) with arterial tonometry

PWVcf, m/sec


Alx, %

CLINICAL & LABORATORY PARAMETERS				
Age,years	57±9			
BMI, kg/m ²	29.0±2.8			
Heart Rate, bpm	70±10			
SBP,mmHg	140±17			
DBP, mmHg	86±13			
cSBP, mmHg	133±10			
cDBP, mm Hg	87±10			
cPP, mm Hg	46±9			
Smoking (%)	12 (29)			
Diabetes (%)	10 (24)			
Drugs (%)	, ,			
Diuretics	18 (44)			
RAAS inhibitors	30 (73)			
ССВ	20 (49)			
B-blockers	14 (31)			
Statins	22 (54)			
eGFR,	77.3±17.9			
ml/min/1.73 m ²				
Hemoglobin, g/dl	15.1±1.2			
Glucose, mg/dl	103			
Total Obalastanal	(63, 294)			
Total Cholesterol, mg/dl	208±72			
HDL, mg/dl	51±14			
Triglycerides, mg/dl	141±66			
VASCULAR MEASUREMENTS				

9.1±1.9

23.8±8.0

ECHO CARDIOGRAPHIC MEASUREMENTS				
CFR	2.60±1.02			
LAVI, ml/m ²	29±7			
LVMI, gr/m ²	89±19			
LVEDV, ml	82±18			
LVESV, ml	30±9			
EF, %	63.6±5.4			
Stroke volume, ml	81±15			
LVOT-VTI, cm	22.6±4.5			
TAPSE, mm	24±4			
MAPSE average, mm	14.0±2.3			
E wave, m/s	0.68±0.14			
A wave, m/s	0.76±0.16			
E/A	0.93±0.25			
DT,ms	213±45			
IVRT, ms	85±21			
A duration, ms	126±21			
IVCT, ms	58±16			
MPI	0.49±0.09			
PASP, mmHg	23±11			
TDI-MV S average, cm/s	9.3±1.7			
TDI-TV S, cm/s	14.9±3.0			
E/E'	7.5±2.2			
GLS	-17.3±2.8			
GCS	-19.0±4.3			

Peak Twist

Universitate and multiversitate acceptations						
Univariate and multivariate associations						
GLS, %	Univariate associations		Multivariate associations R ² 0.24, P=0.005			
	r	Р	B (95% CI)	Р		
Systolic BP, mmHg	0.500	0.003	0.079 (0.026, 0.133)	0.005		
Heart rate, bpm	0.435	0.009	_	_		
LV mass index, gr/m ²	0.437	0.011	-	-		
Diastolic BP, mmHg	0.377	0.028	-	-		
eGFR, ml/min/1.73 m ²	-0.335	0.05	-	-		
APICAL TWIST, degrees	Univariate associations		Multivariate associations R ² 0.05, P=0.008			
LV mass index, gr/m ²	-0.476	0.010	-0.15 (-0.26, -0.04)	0.008		

- Global circumferential strain (GCS) was not associated with any of the studied parameters.
- Global longitudinal strain (GLS)
 - in uninvariate analysis, was associated with conventional echocardiographic indices of systolic function [velocity-timeintegral of LV outflow tract (r=-0.452, p=0.006) and MAPSE (r=-0.329, p=0.05)] as expected, as well as systolic (r=0.500, p=0.003) and diastolic (r=0.377, p=0.028) blood pressure, heart rate (r=0.435, p=0.009), eGFR (r=-0.335,p=0.05), and LV mass index (r=0.437, p=0.011)
 - in multivariate analysis, the sole independent predictor of GLS (R² 0.241) was systolic blood pressure (B 0.079, p=0.005)
- Apical twist was associated with conventional echocardiographic indices of systolic function [LVEF (r=0.415, p=0.023), velocity-timeintegral of LV outflow tract (r=0.401, p=0.028)] as expected as well as LV mass index (r=-0.476, p=0.010)
- Indices of arterial stiffness and CFR did not correlate with any novel index of systolic function: global circumferential strain or GLS or apical twist

Conclusions:

> In healthy hypertensive patients with normal EF, longitudinal and rotational myocardial function were inversely associated with systolic blood pressure and LV mass respectively, but not with indices of arterial stiffness or coronary microvascular function

15.8±6.4

Further research is needed to assess the potential pathophysiological and prognostic role of these echocardiographic indices in patients with hypertension

References:

- Doppler Tissue Imaging Reveals Systolic Dysfunction in Patients with Hypertension and Apparent "Isolated" Diastolic Dysfunction Steen H. Poulsen, Niels H. Andersen, et al (J Am Soc Echocardiogr 2003;16:724-31.)
- **Progression of Left Ventricular Functional Abnormalities in** Hypertensive Patients with Heart Failure: An Ultrasonic Two-Dimensional Speckle Tracking Study Wojciech Kosmala, MD, PhD, Rafal Plaksej, MD, et al J Am Soc Echocardiogr 2008;21:1309-1317.)
- Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging 2008;1:366-76.
- Park SJ, Miyazaki C, Bruce CJ, Ommen S, Miller FA, Oh JK. Left ventricular torsion by two-dimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction. J Am Soc Echocardiogr 2008;21:1129-37.

Poster

