EFFECT OF ACE2 DELETION ON RENAL FUNCTION AND STRUCTURE IN NON-OBESE DIABETIC (NOD) MICE

Roca-Ho H¹, Palau V¹, Riera M¹, Rebull M¹, Gimeno J², Pascual J¹, Soler MJ¹

¹Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain. ²Department of Pathology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.

INTRODUCTION AND AIMS

- ACE2 is altered in diabetic nephropathy $(DN)^{1,2}$. Downregulation of ACE2 either by gene deletion or by pharmacological inhibition worsens DN in STZ and Akita model of type 1 diabetes 3,4,5 .
- We hypothesize that loss of ACE2 contributes to an increase in DN progression in the non-obese diabetic (NOD-ACE2^{-/-}) mice as compared to non-obese resistant mice (NOR-ACE2^{-/-}).

METHODS

- Urinary albumin excretion (UAE) and glomerular filtration rate (GFR) by ELISA kit and inulin-FITC bolus, respectively.
- Systolic blood pressure (SBP), Glomerular hypertrophy, mesangial matrix expansion, podocyte (POD) loss and renal cortex protein expression.
- ACE enzymatic activity in serum and renal cortex was evaluated using a fluorimetric assay.

RESULTS

	GFR (μL/min)	UAE (μg albumin/mg creatinine)	SBP (mmHg)	Renal Cortex Protein Expression (ECA/β-actin)
NOR-ACE2+/+	29,4±4,1	17,6±4,0	109,4±2,7	0,8±0,1
NOR-ACE2-/-	29,3±5,1	19,9±3,7	104,2±2,4	1,0±0,1
NOD-ACE2+/+	54,2±8,3*	770,1±270,2*	117,4±2,4*	0,7±0,1
NOD-ACE2-/-	36,3±6,4	512,0±288,3*	117,1±3,3*	0,9±0,1

Table 1. Renal function, blood pressure and protein expression. The table illustrates the values of glomerular filtration rate, urinary albumin excretion and renal protein expression of diabetic and non-diabetic mice WT and KO. NOD mice showed higher UAE and SBP than NOR mice. The GFR was also higher in NOD-ACE2^{+/+} in comparison with NOR-ACE2^{+/+}. *p≤0,05 NOD vs NOR

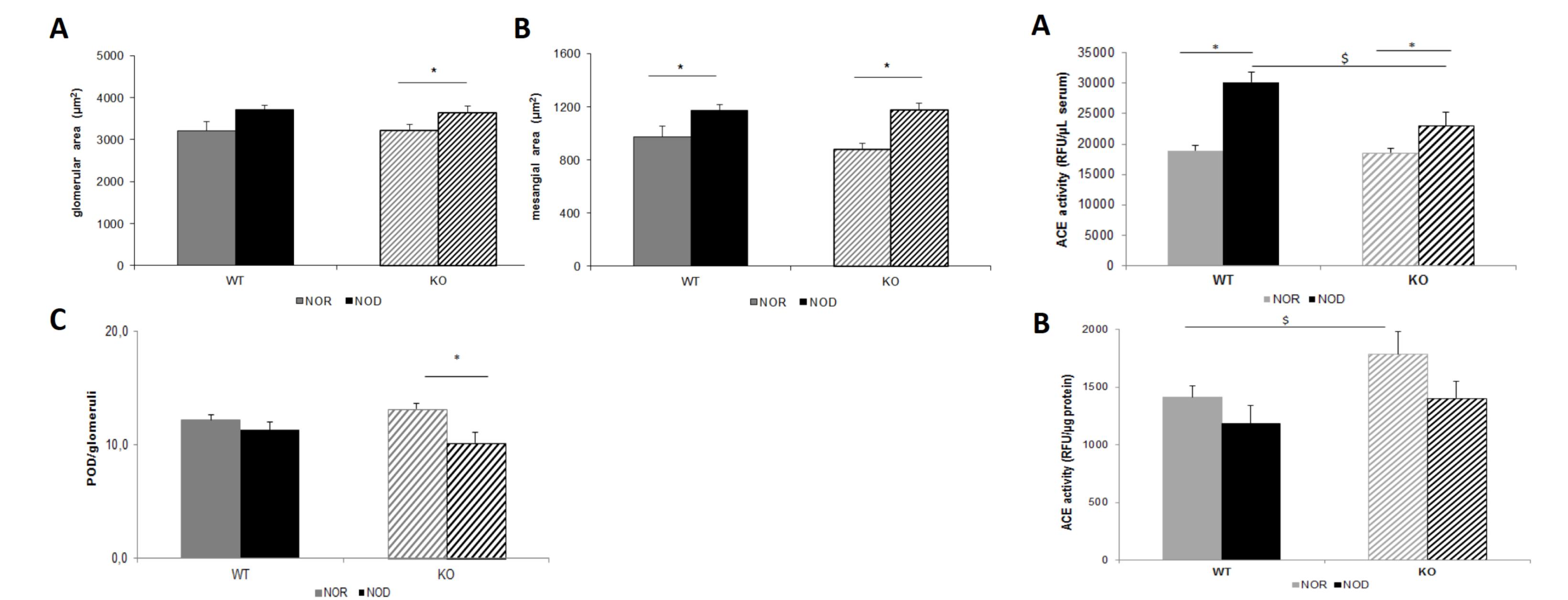


Figure 1. Renal Histology. Glomerular area (A), mesangial area (B) and podocyte number/glomeruli (C) were measured using Image J software. Glomerular and mesangial area was found increased in NODACE2-/- mice as compared to NOR-ACE2-/-. Mesangial area was also increased in NOD-ACE2+/+ mice in comparison with NOR-ACE2+/+. NOD-ACE2-/- mice showed less number of podocytes/glomeruli than NOR-ACE-/- mice. *p≤0,05 NOD vs NOR

Figure 2. ACE enzimatic activity. ACE activity in serum (A) and renal cortex (B) was measured by a fluorimetric assay. Serum of diabetic mice showed significant increase in ACE activity as compared to non-diabetic mice. NOD-ACE2-/- showed less serum ACE activity than NOD-ACE2+/+. NOR-ACE-/- mice showed significant increase in ACE activity in the renal cortex as compared to NOR-ACE2^{+/+}. *p≤0,05 NOD vs NOR; \$p≤0,05 KO vs WT

CONCLUSIONS

- The NOD-ACE2-/- mice present an increased diabetic nephropathy progression in terms of increased glomerular area, mesangial matrix expansion and podocyte loss. These alterations are not accompanied by GFR changes in NOD-ACE2^{-/-} mice despite an increase in GFR in NOD-ACE2^{+/+} mice.
- These results demonstrated that ACE2 deletion worsens kidney disease coupled by serum ACE2 in NOD diabetic mice.

REFERENCES

- ¹ Colucci, J.A. et al. Renin-angiotensin system may trigger kidney damage in NOD mice. *J Renin* Angiotensin Aldosterone Syst, 2011; 12(1):15-22.
- ² Riera, M. et al. Effect of Insulin on ACE2 Activity and Kidney Function in the Non-Obese Diabetic
- Mouse. *PLoS One. 2014*; 9(1). • 3 Oudit, G.Y. et al. Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin
- II-dependent glomerulosclerosis. The American journal of pathology. 2006; 168: 1808-1820. • 4 Ye, M. et al. Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol, 2006;
- 17(11): 3067–3075.
- 5 Soler MJ, Wysocki J et al. ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int. 2007;72:614-623.

