FAT MALABSORPTION CONTRIBUTION TO HYPEROXALURIA AFTER ROUX-EN-Y GASTRIC BYPASS IN RATS UNITED TO THE PROXALURIA AFTER MALABSORPTION CONTRIBUTION TO HYPEROXALURIA AFTER ROUX-EN-Y GASTRIC BYPASS IN RATS M.S.Ormanji, F.Korkes, R.Meca, L.C.Baia, R.R.N.Ferraz, I.P. Heilberg Nephrology Division, Universidade Federal de São Paulo, São Paulo, BRAZIL # UNIVERSIDADE FEDERAL DE SÃO PAULO ## INTRODUCTION - Hyperoxaluria and a higher risk of nephrolithiasis are a common complication of bariatric surgery - We have previously shown that increased intestinal absorption of dietary oxalate is a predisposing mechanism for enteric hyperoxaluria among Roux-en-Y (RY) gastric bypass patients (Clin J Am Soc Nephrol 7(12):2033, 2012). - However, it remains controversial whether or not fat intestinal malabsorption may contribute to hyperoxaluria after RY surgery. ## **AIM** • To investigate the presence of steatorrhea and its relation with urinary oxalate and other parameters in a RY gastric bypass model in rats. ## **METHODS** - Twenty-nine (29) male Wistar rats underwent RY or Sham surgeries. - Two weeks after surgery, the animals were fed with either a supplemented diet with high oxalate (1% sodium oxalate) + fat (18% lipids) (RY-S and Sham-S groups) or a regular chow (RY and Sham) during 8 weeks. - 24h urine collections and stool samples were obtained 1 week before the surgery (baseline) and at the end of the study (final) to determine volume, pH, creatinine, uric acid, magnesium, sodium, calcium and oxalate - Body weight and food consumption were weekly assessed. - Fecal fat was quantified by steatocrit technique at baseline and at the final period. ## **RESULTS** #### RESULTS p<0.05 * vs baseline | | | SHAM | RY | SHAM-S | RY-S | |--------------------------------|----------|----------------|-------------------|---------------------|---------------------------| | Urinary Volume
(mL/24h) | baseline | 12.5 ± 6.0 | 18.5 ± 7.8 | 18.0 ± 7.2 | 20.8 ± 6.6 | | | final | 16.8 ± 5.4 | 14.5 ± 6.9 | 34.0 ± 11.3^{c} | 29.4 ± 14.2^{b} | | Urinary pH | baseline | 6.5 ± 0.3 | 6.3 ± 0.2^{c} | 6.5 ± 0.1 | 7.3 ± 1.1 ^{a.b} | | | final | 6.7 ± 0.9 | 6.5 ± 0.4 | 6.4 ± 1.2 | 6.2 ± 0.5 | | Urinary creatinine
(mg/24h) | baseline | 8.0 ± 1.3 | 9.5 ± 2.2 | 10.2 ± 2.0 | 7.1 ± 1.7 ^a | | | final | 10.2 ± 1.2 | 8.1 ± 4.3 | 7.3 ± 2.6 | 7.4 ± 4.8 | | Urinary uric acid
(mg/24h) | baseline | 1.0 ± 0.7 | 1.5 ± 1.0 | 2.2 ± 0.6 | 1.9 ± 1.0 | | | final | 1.5 ± 0.5 | 1.0 ± 0.8 | 0.4 ± 0.2^{c} | 0.7 ± 0.6 | | Urinary magnesium
(mg/24h) | baseline | 2.4 ± 0.6 | 3.0 ± 0.9 | 3.4 ± 1.9 | 3.2 ± 0.6 | | | final | 2.8 ± 1.6 | 3.2 ± 1.1 | 4.7 ± 2.1 | 2.8 ± 0.9 | | Urinary sodium
(mEq/24h) | baseline | 0.3 ± 0.3 | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.1 | | | final | 0.5 ± 0.2 | 0.6 ± 0.4 | 0.2 ± 0.2 | 1.0 ± 0.6^{a} | | Urinary calcium
(mg/24h) | baseline | 0.8 ± 0.2 | 0.9 ± 0.3 | 1.1 ± 0.6 | 1.1 ± 0.3 | | | final | 1.3 ± 0.8 | 1.2 ± 0.5 | 3.0 ± 2.9 | 0.6 ± 0.2^{a} | | Urinary oxalate
(mg/24h) | baseline | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.2 | 0.6 ± 0.2 | | | final | 0.4 ± 0.1 | 0.8 ± 0.6 | 1.4 ± 0.7 | $6.0 \pm 3.3^{a.b}$ | | Steatocrit (%) | baseline | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | | | final | 0.0 ± 0.0 | 1.1 ± 2.9 | 0.0 ± 0.0 | 13.8 ± 4.9 ^{a.b} | p<0.05 a vs Sham-S; b vs RY; c vs Sham #### SUMMARY ### Comparison between periods (final vs baseline) - In Sham group, urinary creatinine was significantly higher and oxalate significantly lower. - In RY group, no significant differences were observed. - In Sham-S group, urinary volume was significantly higher and uric acid and creatinine significantly lower. - In RY-S group, significant decreases in urinary pH, uric acid, calcium and significant increases in urinary sodium, oxalate and steatocrit were observed. ## Comparison between groups ### <u>Baseline</u> - In RY group, the urinary pH was significantly lower vs Sham. - In RY-S group, the urinary pH was significantly higher vs RY and Sham-S and urinary creatinine significantly lower vs Sham-S. ## Final - In Sham-S group, the urinary volume was significantly higher and uric acid significantly lower vs Sham. - In RY-S group, urinary volume and sodium were significantly higher vs RY and Sham-S and urinary calcium significantly lower vs Sham-S. A marked and significant increase in urinary oxalate and in the steatocrit was observed vs RY and Sham. ## CONCLUSION We concluded that a high fat and oxalate rich diet in this RY model, induced a significant and marked increase in urinary oxalate and fecal fat suggesting that under these dietary conditions, fat malabsorption leads to hyperoxaluria after RY gastric bypass. Contact: ita.heilberg@gmail.com p<0.05 * vs baseline