FAT MALABSORPTION CONTRIBUTION TO HYPEROXALURIA AFTER ROUX-EN-Y GASTRIC BYPASS IN RATS UNITED TO THE PROXALURIA AFTER MALABSORPTION CONTRIBUTION TO HYPEROXALURIA AFTER ROUX-EN-Y GASTRIC BYPASS IN RATS

M.S.Ormanji, F.Korkes, R.Meca, L.C.Baia, R.R.N.Ferraz, I.P. Heilberg Nephrology Division, Universidade Federal de São Paulo, São Paulo, BRAZIL

UNIVERSIDADE FEDERAL DE SÃO PAULO

INTRODUCTION

- Hyperoxaluria and a higher risk of nephrolithiasis are a common complication of bariatric surgery
- We have previously shown that increased intestinal absorption of dietary oxalate is a predisposing mechanism for enteric hyperoxaluria among Roux-en-Y (RY) gastric bypass patients (Clin J Am Soc Nephrol 7(12):2033, 2012).
- However, it remains controversial whether or not fat intestinal malabsorption may contribute to hyperoxaluria after RY surgery.

AIM

• To investigate the presence of steatorrhea and its relation with urinary oxalate and other parameters in a RY gastric bypass model in rats.

METHODS

- Twenty-nine (29) male Wistar rats underwent RY or Sham surgeries.
- Two weeks after surgery, the animals were fed with either a supplemented diet with high oxalate (1% sodium oxalate) + fat (18% lipids) (RY-S and Sham-S groups) or a regular chow (RY and Sham) during 8 weeks.
- 24h urine collections and stool samples were obtained 1 week before the surgery (baseline) and at the end of the study (final) to determine volume, pH, creatinine, uric acid, magnesium, sodium, calcium and oxalate
- Body weight and food consumption were weekly assessed.
- Fecal fat was quantified by steatocrit technique at baseline and at the final period.

RESULTS

RESULTS

p<0.05 * vs baseline

		SHAM	RY	SHAM-S	RY-S
Urinary Volume (mL/24h)	baseline	12.5 ± 6.0	18.5 ± 7.8	18.0 ± 7.2	20.8 ± 6.6
	final	16.8 ± 5.4	14.5 ± 6.9	34.0 ± 11.3^{c}	29.4 ± 14.2^{b}
Urinary pH	baseline	6.5 ± 0.3	6.3 ± 0.2^{c}	6.5 ± 0.1	7.3 ± 1.1 ^{a.b}
	final	6.7 ± 0.9	6.5 ± 0.4	6.4 ± 1.2	6.2 ± 0.5
Urinary creatinine (mg/24h)	baseline	8.0 ± 1.3	9.5 ± 2.2	10.2 ± 2.0	7.1 ± 1.7 ^a
	final	10.2 ± 1.2	8.1 ± 4.3	7.3 ± 2.6	7.4 ± 4.8
Urinary uric acid (mg/24h)	baseline	1.0 ± 0.7	1.5 ± 1.0	2.2 ± 0.6	1.9 ± 1.0
	final	1.5 ± 0.5	1.0 ± 0.8	0.4 ± 0.2^{c}	0.7 ± 0.6
Urinary magnesium (mg/24h)	baseline	2.4 ± 0.6	3.0 ± 0.9	3.4 ± 1.9	3.2 ± 0.6
	final	2.8 ± 1.6	3.2 ± 1.1	4.7 ± 2.1	2.8 ± 0.9
Urinary sodium (mEq/24h)	baseline	0.3 ± 0.3	0.2 ± 0.2	0.2 ± 0.1	0.2 ± 0.1
	final	0.5 ± 0.2	0.6 ± 0.4	0.2 ± 0.2	1.0 ± 0.6^{a}
Urinary calcium (mg/24h)	baseline	0.8 ± 0.2	0.9 ± 0.3	1.1 ± 0.6	1.1 ± 0.3
	final	1.3 ± 0.8	1.2 ± 0.5	3.0 ± 2.9	0.6 ± 0.2^{a}
Urinary oxalate (mg/24h)	baseline	0.6 ± 0.1	0.6 ± 0.1	0.6 ± 0.2	0.6 ± 0.2
	final	0.4 ± 0.1	0.8 ± 0.6	1.4 ± 0.7	$6.0 \pm 3.3^{a.b}$
Steatocrit (%)	baseline	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
	final	0.0 ± 0.0	1.1 ± 2.9	0.0 ± 0.0	13.8 ± 4.9 ^{a.b}

p<0.05 a vs Sham-S; b vs RY; c vs Sham

SUMMARY

Comparison between periods (final vs baseline)

- In Sham group, urinary creatinine was significantly higher and oxalate significantly lower.
- In RY group, no significant differences were observed.
- In Sham-S group, urinary volume was significantly higher and uric acid and creatinine significantly lower.
- In RY-S group, significant decreases in urinary pH, uric acid, calcium and significant increases in urinary sodium, oxalate and steatocrit were observed.

Comparison between groups

<u>Baseline</u>

- In RY group, the urinary pH was significantly lower vs Sham.
- In RY-S group, the urinary pH was significantly higher vs RY and Sham-S and urinary creatinine significantly lower vs Sham-S.

Final

- In Sham-S group, the urinary volume was significantly higher and uric acid significantly lower vs Sham.
- In RY-S group, urinary volume and sodium were significantly higher vs RY and Sham-S and urinary calcium significantly lower vs Sham-S. A marked and significant increase in urinary oxalate and in the steatocrit was observed vs RY and Sham.

CONCLUSION

 We concluded that a high fat and oxalate rich diet in this RY model, induced a significant and marked increase in urinary oxalate and fecal fat suggesting that under these dietary conditions, fat malabsorption leads to hyperoxaluria after RY gastric bypass.

Contact: ita.heilberg@gmail.com

p<0.05 * vs baseline