The Feasibility of Using Urine Osmolality as Reflection of Vasopressin Levels and Prognosis in Patients with ADPKD

Niek F. Casteleijn¹, Debbie Zittema¹, Stephan J.L. Bakker¹, Wendy E. Boertien¹, Carlo A. Gaillard¹, Esther Meijer¹, Edwin M. Spithoven¹, Joachim Struck² and Ron T. Gansevoort¹

1: Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. 2:Thermo Fisher Scientific, Hennigsdorf/Berlin, Germany

Introduction

- Vasopressin plays an essential role in osmoregulation, but has deleterious effects in patients with ADPKD
- Increasing water intake to suppress vasopressin activity has been suggested as potential renoprotective strategy

Study Aim

 To investigate whether urine osmolality can be used to identify ADPKD subjects that may benefit from increasing water intake

Study Questions

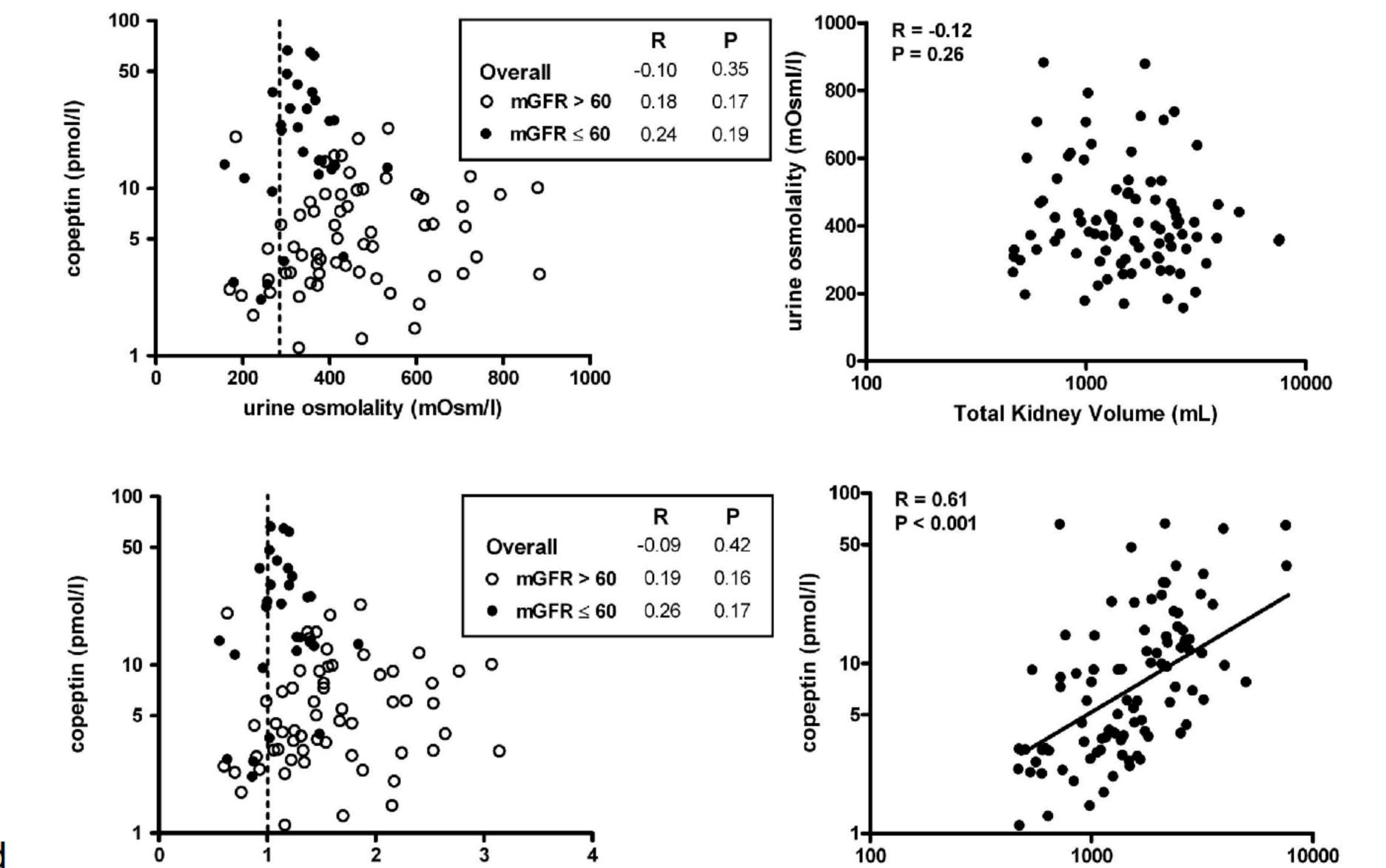
- To investigate the association of urine osmolality and urine to plasma osmolality ratio with plasma copeptin concentration (as surrogate for plasma vasopressin concentration) and whether these associations depend on disease severity
- To investigate whether urine osmolality, urine to plasma osmolality ration and plasma copeptin are associated with change in renal function during follow-up

Methods

- Urine and plasma osmolality and plasma copeptin concentration were measured in 94 ADPKD subjects
- mGFR was measured as ¹²⁵I-iothalamate clearance and Total Kidney Volume (TKV) by MRI.
- Change in estimated GFR (eGFR) was assessed in 55
 ADPKD patients during a mean follow-up time of 2.8 yrs

Conclusions

- Urine osmolality is not a valid measure to identify ADPKD subjects that may benefit from increasing water intake
- For this purpose measuring copeptin levels may be a better alternative


Baseline characteristics

	All	mGFR ≤ 60	mGFR > 60
	n=94	n=30	n=64
Age (y)	40	47	38*
Male (%)	59.6	70	54.7
Antihypertensives (%)	75.5	96.7	65.6*
Systolic blood pressure (mmHg)	128	130	128
Diastolic blood pressure (mmHg)	79	80	79
Plasma creatinine (umol/l)	123	208	82*
Plasma osmol (mOsm/kg)	289± 7	292 ± 7	289 ± 7*
Plasma copeptin (pmol/L)	7.3(3.2 - 14.6)	19.4 (12.0 – 34.6)	4.5 (3.1 – 9.1)*
mGFR (mL/min/1.73m ²)	77 ± 32	38 ± 15	95 ± 18*
24h urine volume (L)	2.35(1.79 - 2.76)	2.58 (2.06 - 3.23)	2.15 (1.65 – 2.65)*
24h urine osmol (mOsm/kg)	420 ± 195	329 ± 79	459 ± 164*
Urine to plasma osmolality ratio	1.4 (1.1 – 1.8)	1.3 (1.0 – 1.3)	1.5 (1.2 – 2.1)
Total Kidney Volume (L)	1.55 (0.99 – 2.40)	2.20 (1.42 – 3.12)	1.36 (0.08 – 1.84)*

*, p<0.05 versus group with mGFR ≤ 60 ml/min*1.73m2.

Baseline associations

urine osmolality / plasma osmolality ratio

Associations with change in eGFR during FU

	Model 1		Mo	Model 2		Model 3	
	β	p-value	β	p-value	β	p-value	
Uosm	+0.11	0.43	+0.17	0.30	+0.14	0.34	
Age			+0.10	0.54	+0.21	0.18	
Male sex			+0.18	0.22	-0.06	0.71	
TKV					-0.53	0.001	
Uosm/Posm ratio	+0.09	0.53	+0.16	0.37	+0.13	0.40	
Age			+0.09	0.59	+0.21	0.20	
Male sex			+0.17	0.26	-0.04	0.78	
TKV					-0.52	0.002	
Copeptin	-0.41	0.003	-0.43	0.006	-0.23	0.048	
Age			-0.34	0.71	+0.14	0.30	
Male sex			-0.15	0.83	-0.12	0.41	
TKV					-0.41	0.02	

Change in eGFR during follow-up (as dependant variable) in 55 ADPKD patients.

Total Kidney Volume (mL)

