Cardiac and Non-cardiac Determinants of Exercise Capacity in Asymptomatic Non-Diabetic Chronic Kidney Disease Patients Chinnappa S^{1,2,}, Mooney A², El Nahas AM³, Tan LB² ¹Sheffield Teaching Hospitals NHS Trust, ²Leeds Teaching Hospitals NHS Trust, ³University of Sheffield, United Kingdom ## INTRODUCTION As there is growing interest in utilising the measures of exercise capacity such as peak O_2 consumption (VO_{2max}) as markers of cardiac dysfunction in CKD, it is necessary to understand the differential role of cardiac output (CO) and peripheral O_2 extraction in determining exercise capacity in CKD. After all VO_{2max} is a product of CO and $C(a-v)O_2$. Hypothesis: In the present study we tested the hypothesis that reduced peripheral O_2 extraction contributes significantly to impaired exercise capacity in CKD. #### **METHODS** - A cross sectional study of 60 asymptomatic male non-diabetic CKD patients [CKD stages 2-5 (pre dialysis)] without primary cardiac disease. - Historical data from age matched healthy male volunteers (n=101) was used as controls. - Data from heart failure (HF) patients of NYHA class II&III (n=39) was used as positive controls. - Specialised CPX test with CO₂ rebreathing technique was utilised to measure peak cardiac output non-invasively. - CKD related biochemical parameters were also measured. Results are presented as mean±SD. P<0.05 is considered as significant. ### RESULTS - The VO_{2max} of the study groups were: Controls: 2.98±0.9, CKD2-3: 2.74±0.5, CKD4: 2.54±0.5, CKD5: 2.18±0.4 & HF: 1.57±0.4 l/min. - Fig 1 shows the correlations of Peak CO and $C(a-v)O_2$ with VO_{2max} and Fig 2 shows the relative differences in these parameters amongst the study groups (Healthy controls, CKD patients and Heart failure patients). - Table 1 shows the significant correlates of VO_{2max} on univariate analysis (all P<0.05). No correlation was demonstrated with Ca, PO_4 , PTH, total cholesterol or urine protein creatinine ratio. Table 1 • Multivariate analysis showed that PkCO (β =0.387), Hb (β =0.314), peak heart rate (β =0.236), BMI (β =0.22) and age (β =-0.194) were independent predictors of VO_{2max} in CKD together accounting for >75% of its variability. **Fig 1**: Correlation of peak O2 consumption with Peak cardiac output and arterio-venous O_2 difference in CKD patients. | Parameters | Correlation Coefficient (r) | |---------------|-----------------------------| | Pk heart rate | 0.48 | | Age | 0.50 | | BMI | 0.30 | | eGFR | 0.51 | | Hb | 0.60 | **Fig 2**: Peak cardiac output and arterio-venous O_2 difference across the study categories. The reduction in VO_{2max} in CKD patients is influenced by greater reduction in $C(a-v)O_2$ than Pk CO in contrast to that of HF patients. # p<0.05 vs Controls for Pk CO. *p<0.05 vs Controls for $C(a-v)O_2$. # CONCLUSION - This study demonstrates the relative contributions of cardiac and non-cardiac determinants of exercise capacity in CKD. - It highlights the significant role of peripheral O_2 extraction and hence the limitation in utilising VO_{2max} as a surrogate of cardiac dysfunction. We thank Yorkshire Kidney Research Fund and Sheffield Kidney Research Foundation for supporting the project