EFFECTS OF FASTING ON RENAL FUNCTION OF PATIENTS WITH AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE

Iskender Ekinci¹, Rumeyza Kazancioglu², Reha Erkoc², Elif Kilic³, Elif Ece Dogan¹, Meltem Gursu², Egemen Cebeci⁴, Savas Ozturk⁵

¹ Bezmialem Vakif University Department of Internal Medicine, Istanbul, Turkey, ²Bezmialem Vakif University Department of Nephrology, Istanbul, Turkey, ³Bezmialem Vakif University Department of Biochemistry, Istanbul, Turkey ⁴Okmeydani Training and Research Hospital Department of Nephrology, Istanbul, Turkey, ⁵Haseki Training and Research Hospital Department of Nephrology, Istanbul, Turkey.

Fasting means abstain from food and drink from sunrise to sunset in month of Ramadan and duration of the fasting ranges from 10 to 18 h per day (approximately 17 h in this study). Fasting can be a possible risk factor for renal function impairment considering that dehydration is a well-known cause of kidney failure (1). In this study we aimed to evaluate this condition in autosomal dominant polycystic kidney disease (ADPKD) patients.

Methods:

This prospective observational study was conducted with 52 patients with ADPKD. Patients were divided into 2 groups according to fasting group (FG) and non-fasting group (NFG). The NFG were seen a week before Ramadan (BR) and a month after Ramadan (AR). The FG were seen the last day of the fasting (ER) in addition to the above visits. The following parameters were checked at each visit: Systolic blood pressure (SBP), diastolic blood pressure (DBP) weight, Na, K, creatinine, glucose, lipid profile, urine density, 24-hour urine volume, 24-hour urine protein and GFR. The urine samples were taken from each patient for neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) in all visits. Kidney function tests were analyzed on the 7th day of fasting in FG for identify early kidney damage.

Of the remaining 52 patients there were 21 patients in FG (4/17, M/F) and 31 patients in NFG (13/18 M/F). There was no significant difference between two groups in term of age, gender, disease duration and presence of hypertension (Table-1). During the follow-up period there was no significant change observed in SBP, DBP, weight, creatinine, albumin, lipid profile, urine density, 24-hour urine volume, NGAL, KIM-1 and GFR in both groups (Table-2). 24-hour urine protein was significantly decreased in FG.

Table-1: Demographic data of the groups

Table-2: Biochemical data of the groups

	FG	NFG	
	Ort.±SD	Ort.±SD	p
Age, (years)	45±11	47±14	0.48
Gender (Male/Female)	4/17	13/18	0.08
Disease duration (years)	10.4±8.2	12.5±8.4	0.33
Presence of HT	10(%47.6)	22 (%71.0)	0.08

	FG	NFG			PR	ER	AR	p
	Ort.±SD	Ort.±SD	p	Fasting group				
Age, (years)	45+11	47+14	0.48	Creatinine (mg/dl)	0.84±0.20	0.85±0.17	0.85±0.19	0.725
Condor (Mala/Eamala)	4/17	12/10	0.40	Urine volume(ml/day)	2450±910	2142±591	2198±756	0.110
Jender (Male/Female)	4/1/	13/18	0.08	Urinary protein (mg/day)	283±123	245±86	207±79	0.001
Disease duration (years)	10.4±8.2	12.5±8.4	0.33	NGAL (pg/ml)	122.8±116.0	136.8±125.2	247.2±235.4	0.102
Presence of HT	10(%47.6)	22 (%71.0)	0.08	KIM-1 (pg/ml)	1102.8±630.1	1103.0±638.0	1170.7±681.2	0.709
				GFR (ml/min)	87±18	85±21	86±19	0.588
				Glucose (mg/dl)	96.6±11.2	103.4±12.3	93.5±13.0	<0.001
				Non-fasting group				
				Creatinine (mg/dl)	1.53±1.08		1.64±1.33	0.159
				Urine volume(ml/day)	2353±1236		2402±972	0.728
				Urinary protein (mg/day)	718±1436		637±1270	0.071
				NGAL (pg/ml)	143.9±135.8		146.3±121.8	0.410
				KIM-1 (pg/ml)	1356.2±684.3		1559.8±588.8	0.068
				GFR (ml/dk)	66±36		64±36	0.471
				Glucose (mg/dl)	96.2±15.8		99.3±17.9	0.220

Fasting did not affect renal functions negatively in patients with early stages of chronic kidney disease due to ADPKD, besides it did not cause a significant change in markers of acute kidney injury. Daily urinary protein was significantly reduced in FG.

1. John Harty. Prevention and Management of Acute Kidney Injury. Ulster Med J. 2014 Sep; 83(3): 149–157

