

HNF1B whole-gene deletions are associated with autistic traits

Rhian Clissold¹, Charles Shaw-Smith¹, Simon Waller², Detlef Bockenhauer³, Larissa Kerecuk⁴, Sian Ellard¹, Andrew Hattersley¹, Coralie Bingham¹

¹NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK, ² Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK, ³ Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK and ⁴ Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK

Introduction

- Heterozygous mutations and deletions of the HNF1B gene result in a multi-system disorder and are the commonest monogenic cause of developmental kidney disease.¹
- Increasing interest has focused on whether *HNF1B* gene anomalies are associated with neuropsychological conditions.
- A 1.4 Mb deletion at chromosome 17q12, which includes HNF1B, confers an increased risk of autism and cognitive impairment.²
- Recent work suggests that when children are diagnosed with a 17q12 deletion secondary to kidney abnormalities, the neurodevelopmental phenotype is less severe than that previously reported.³
- The deleted stretch of DNA contains 15 genes and it is not clear what genetic mechanism gives rise to this neuropsychological phenotype.

Aims

 To assess neuropsychological disorders in children and adults with either an HNF1B mutation or whole-gene deletion under follow-up with nephrology or diabetes services.

Methods

- 35 patients (age range 4-65 years) with known *HNF1B* coding region/splice site mutations (n=16) or whole-gene deletions (n=19) from 4 UK centres were compared.
- Autistic traits were assessed using the Autism-Spectrum Quotient (AQ).
- Cognitive ability was assessed using the Kaufman Brief Intelligence Test, Second Edition.
- Brief behavioural screening was carried out in 4-16 year olds only using the Strengths and Difficulties Questionnaire.
- Facial photographs of the patients were taken and analysed by a clinical geneticist.
- Results were analysed using the unpaired t-test and Fisher's exact test.

Results

GENERAL CHARACTERISTICS (TABLE 1)

	HNF1B mutation (N=16)	HNF1B whole-gene deletion (N=19)	Р	
Median age, years (IQR)	19 (13-45)	16 (12-37)	0.4	
Sex, N (%)	F 8 (50%), M 8 (50%)	F 12 (63%), M 7 (37%)	0.5	
Ethnicity, N (%)	White British 16 (100%)	White British 16 (84%), other 3 (16%)	0.2	
Median Indices of Deprivation 2007 score (IQR)	25 (16-58)	21 (12-30)	0.3	
Inheritance, N (%) From affected parent De novo Unknown	9 (56%) 3 (19%) 4 (25%)	2 (11%) 6 (32%) 11 (58%)	0.009 0.5 0.09	
Renal abnormality, N (%) Cysts Other*	10 (63%) 4 (25%)	15 (79%) 3 (16%)	0.7	
Median age at diagnosis of renal disease, years (IQR)	0 (0-22)	0 (0-26)	0.8	
Diabetes, N (%)	6 (38%)	7 (37%)	1	
Median age at diagnosis of diabetes (IQR)	20 (18-43)	31 (19-33)	0.9	
Abbreviations: F, female; IQR, interquartile range; M, male. *Other renal structural abnormalities included cystic dysplasia, single kidney, collecting system abnormalities and bilateral				

- •Both groups were similar in terms of age, gender, ethnicity, Indices of Deprivation 2007 score, renal disease and diabetes.
- •Inheritance from an affected parent was more common in patients with an *HNF1B* gene mutation (56% *versus* 11% in deletion group, *P*=0.009).

AUTISTIC TRAITS (FIGURE 1)

hydronephrosis; in 3 cases the imaging results were not known.

Patients with an HNF1B
 whole-gene deletion had a
 higher median AQ (45.9%
 versus 28.7% in the
 mutation group, P=0.006),
 indicating a greater
 number of autistic traits.

COGNITIVE ABILITY (FIGURE 2)

 The median IQ composite was similar in both groups (92 in mutation group versus 92.5 in deletion group, P=0.7).

BEHAVIOURAL SCREENING (TABLE 2)

 The likelihood of a probable emotional, behavioural or hyperactivity/concentration disorder was similar in both groups but the numbers were very small.

	HNF1B mutation (N=7)	HNF1B whole-gene deletion (N=10)	P	
Mean parental total difficulties score (SD) ^a	7.3 (0.6)	15.7 (9.8)	0.2	
Mean child total difficulties score (SD) ^b	14.7 (7.2)	15.7 (13.2)	0.9	
Mean parental impact score (SD) ^c	0	4.7 (3.1)	0.03	
Mean child impact score (SD) ^c	0.7 (1.2)	2.7 (3.8)	0.4	
Prediction to any disorder, <i>N</i> Probable Possible or unlikely	1 2	5 4	1	
Abbreviations: SD, standard deviation. $^{\circ}$ 0-13 is a close to average score; $^{\circ}$ 0 is a close to average score.				

Table 2. Strengths and Difficulties Questionnaire results

CLINICAL DIAGNOSIS

- 6/19 (31.6%) patients with a whole-gene deletion had a clinical diagnosis of either an autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) (versus 0/16 patients with a mutation, P=0.02).
- The prevalence rate of autism in the UK is 1.1%⁴; the estimated pooled prevalence of ADHD was 7.2% in a recent meta-analysis⁵.

FACIAL PHENOTYPE (FIGURE 3)

• Three mild facial dysmorphic features previously described in patients with a 17q12 deletion (prominent forehead, arched and high eyebrows, long face)^{2,3} were seen in the whole-gene deletion group but not the mutation group.

Figure 2. Photographs of 7 patients with an HNF1B whole-gene deletion. A prominent forehead
(cases A-F), arched and high eyebrows (cases A and E) and a long face (cases A, C and D) were
seen. Case A also had down-slanting palpebral fissures.

Conclusions

- Patients with whole-gene deletion of *HNF1B* displayed a greater number of autistic traits than those with *HNF1B* mutations.
- IQ composite scores were similar between the 2 groups.
- The frequency of ASD and ADHD in the whole-gene deletion group is much greater than the population prevalence; this suggests that the neuropsychological phenotype in patients with a 17q12 deletion diagnosed secondary to kidney problems or diabetes is more severe than previously reported.³
- These results indicate it is not haploinsufficiency of the HNF1B gene that is responsible but another genetic mechanism yet to be determined.
- Nephrologists should be aware of this association to ensure referral to psychiatric services can be made where applicable.

References

- 1. Clissold, R. L. et al. Nat Rev Nephrol 11, 102–112 (2015)
- 2. Moreno-De-Luca, D. et al. Am J Hum Genet 87, 618–630 (2010)
- 3. Laffargue, F. et al. Arch Dis Child 0, 1-6 (2014)
- 4. www.autism.org.uk
- 5. Thomas, R. et al. Pediatrics 135, e994-e1001 (2015)

Exeter NIHR Clinical Research Facility is a partnership between the University of Exeter and the Royal Devon & Exeter Foundation Trust

