Hemodialysis and Hemodiafiltration Improve Serum Calcification Propensity Marijke Dekker^{1,2}, Andreas Pasch^{3,4}, Frank van der Sande¹, Constantijn Konings², Matthias Bachtler⁴, Mauro Dionisi⁵, Matthias Meier⁵, Jeroen Kooman¹, Bernard Canaud⁶. ¹Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, The Netherlands. ²Department of Internal Medicine, Division of Nephrology, Catharina Hospital Eindhoven, The Netherlands. ³Department of Clinical Chemistry, University Hospital Bern, Bern, Switzerland. ⁴Department of Clinical Research, University of Bern, Bern, Switzerland; ⁵Calcisco AG, Bern, Switzerland. ⁶Fresenius Medical Care, Bad Homburg, Germany. Contact: marijke.dekker@cze.nl ### Introduction Calciprotein particles (CPPs) may play an important role in the calcification process. The formation of CPPs is a two step process (see figure 1 below). The transformation time (T_{50}) from primary to secondary CPPs, is thought to reflect the calcification propensity of serum and is highly predictive of all-cause mortality in chronic kidney disease patients. Whether T_{50} is therapeutically improvable, by high-flux hemodialysis (HD) or even further by high-volume hemodiafiltration (HDF), has not been studied yet. ## Methods In this cross-sectional single center study we included stable prevalent HD and HDF patients treated on a 4 hours three times weekly schedule. We included patients with a dialysis vintage of at least 3 months and a vascular access providing a blood flow rate of at least 300ml/min in both groups. The serum T_{50} , was measured using time resolved nephelometry (figure 1). ### Results - We included 64 patients, mean age 70 years, 53.1% male, dialysis vintage 50 months. - 53.1% post-dilution HDF with a mean convection volume of 23.6L (\pm 3.2L). - T₅₀ levels improved in both groups after dialysis with a mean improvement of 26.3% in the HD and 22.0% in the HDF group (P=0.61) (see figure 2 below). - Delta values of calcium, phosphate and serum albumin were equal in both groups. - Baseline T₅₀ was negatively correlated with phosphate and positively correlated with serum magnesium and Fetuin-A levels. - The delta T_{50} was most influenced by the delta phosphate (r^2 0.280; P=0.01 in the HD group and r^2 0.239; P=0.02 in the HDF group). ## Conclusion HD and HDF patients present with same baseline vascular calcification risk values pre-dialysis. Calcification propensity is significantly improved during both HD and HDF sessions. T_{50} might be a useful guide to optimize renal replacement strategy to improve the individual calcification risk in dialysis patients. post-dialysis 263 (±42) Hemodiafiltration (>23L) 318 (±47) 266 (±66) Hemodiafiltration (20-23L) 295 (±81) 225 (±66) Hemodiafiltration (<20L) 283 (±62) 244 (±64) High-flux hemodialysis 301 (±57) 350 400 T₅₀ in minutes Figure 2: Change in $\rm T_{50}$ after hemodialysis and hemodiafiltration in separate convection volumes, presented as mean (\pm SD) .